forked from pybamm-team/PyBaMM
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added graphite half-cell parameter files
- Loading branch information
DrSOKane
committed
Jun 12, 2023
1 parent
cf53ff1
commit 78001e8
Showing
16 changed files
with
1,079 additions
and
247 deletions.
There are no files selected for viewing
377 changes: 377 additions & 0 deletions
377
pybamm/input/parameters/lithium_ion/Chen2020_composite_halfcell.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,377 @@ | ||
import pybamm | ||
import os | ||
|
||
|
||
def graphite_LGM50_electrolyte_exchange_current_density_Chen2020( | ||
c_e, c_s_surf, c_s_max, T | ||
): | ||
""" | ||
Exchange-current density for Butler-Volmer reactions between graphite and LiPF6 in | ||
EC:DMC. | ||
References | ||
---------- | ||
.. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. | ||
Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for | ||
Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the | ||
Electrochemical Society 167 (2020): 080534. | ||
Parameters | ||
---------- | ||
c_e : :class:`pybamm.Symbol` | ||
Electrolyte concentration [mol.m-3] | ||
c_s_surf : :class:`pybamm.Symbol` | ||
Particle concentration [mol.m-3] | ||
c_s_max : :class:`pybamm.Symbol` | ||
Maximum particle concentration [mol.m-3] | ||
T : :class:`pybamm.Symbol` | ||
Temperature [K] | ||
Returns | ||
------- | ||
:class:`pybamm.Symbol` | ||
Exchange-current density [A.m-2] | ||
""" | ||
m_ref = 6.48e-7 # (A/m2)(m3/mol)**1.5 - includes ref concentrations | ||
E_r = 35000 | ||
arrhenius = pybamm.exp(E_r / pybamm.constants.R * (1 / 298.15 - 1 / T)) | ||
|
||
return ( | ||
m_ref * arrhenius * c_e**0.5 * c_s_surf**0.5 * (c_s_max - c_s_surf) ** 0.5 | ||
) | ||
|
||
|
||
def silicon_ocp_lithiation_Mark2016(sto): | ||
""" | ||
silicon Open-circuit Potential (OCP) as a a function of the | ||
stochiometry. The fit is taken from the Enertech cell [1], which is only accurate | ||
for 0 < sto < 1. | ||
References | ||
---------- | ||
.. [1] Verbrugge M, Baker D, Xiao X. Formulation for the treatment of multiple | ||
electrochemical reactions and associated speciation for the Lithium-Silicon | ||
electrode[J]. Journal of The Electrochemical Society, 2015, 163(2): A262. | ||
Parameters | ||
---------- | ||
sto: double | ||
Stochiometry of material (li-fraction) | ||
Returns | ||
------- | ||
:class:`pybamm.Symbol` | ||
OCP [V] | ||
""" | ||
p1 = -96.63 | ||
p2 = 372.6 | ||
p3 = -587.6 | ||
p4 = 489.9 | ||
p5 = -232.8 | ||
p6 = 62.99 | ||
p7 = -9.286 | ||
p8 = 0.8633 | ||
|
||
U_lithiation = ( | ||
p1 * sto**7 | ||
+ p2 * sto**6 | ||
+ p3 * sto**5 | ||
+ p4 * sto**4 | ||
+ p5 * sto**3 | ||
+ p6 * sto**2 | ||
+ p7 * sto | ||
+ p8 | ||
) | ||
return U_lithiation | ||
|
||
|
||
def silicon_ocp_delithiation_Mark2016(sto): | ||
""" | ||
silicon Open-circuit Potential (OCP) as a a function of the | ||
stochiometry. The fit is taken from the Enertech cell [1], which is only accurate | ||
for 0 < sto < 1. | ||
References | ||
---------- | ||
.. [1] Verbrugge M, Baker D, Xiao X. Formulation for the treatment of multiple | ||
electrochemical reactions and associated speciation for the Lithium-Silicon | ||
electrode[J]. Journal of The Electrochemical Society, 2015, 163(2): A262. | ||
Parameters | ||
---------- | ||
sto: double | ||
Stochiometry of material (li-fraction) | ||
Returns | ||
------- | ||
:class:`pybamm.Symbol` | ||
OCP [V] | ||
""" | ||
p1 = -51.02 | ||
p2 = 161.3 | ||
p3 = -205.7 | ||
p4 = 140.2 | ||
p5 = -58.76 | ||
p6 = 16.87 | ||
p7 = -3.792 | ||
p8 = 0.9937 | ||
|
||
U_delithiation = ( | ||
p1 * sto**7 | ||
+ p2 * sto**6 | ||
+ p3 * sto**5 | ||
+ p4 * sto**4 | ||
+ p5 * sto**3 | ||
+ p6 * sto**2 | ||
+ p7 * sto | ||
+ p8 | ||
) | ||
return U_delithiation | ||
|
||
|
||
def silicon_LGM50_electrolyte_exchange_current_density_Chen2020( | ||
c_e, c_s_surf, c_s_max, T | ||
): | ||
""" | ||
Exchange-current density for Butler-Volmer reactions between silicon and LiPF6 in | ||
EC:DMC. | ||
References | ||
---------- | ||
.. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. | ||
Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for | ||
Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the | ||
Electrochemical Society 167 (2020): 080534. | ||
Parameters | ||
---------- | ||
c_e : :class:`pybamm.Symbol` | ||
Electrolyte concentration [mol.m-3] | ||
c_s_surf : :class:`pybamm.Symbol` | ||
Particle concentration [mol.m-3] | ||
c_s_max : :class:`pybamm.Symbol` | ||
Maximum particle concentration [mol.m-3] | ||
T : :class:`pybamm.Symbol` | ||
Temperature [K] | ||
Returns | ||
------- | ||
:class:`pybamm.Symbol` | ||
Exchange-current density [A.m-2] | ||
""" | ||
|
||
m_ref = ( | ||
6.48e-7 * 28700 / 278000 | ||
) # (A/m2)(m3/mol)**1.5 - includes ref concentrations | ||
E_r = 35000 | ||
arrhenius = pybamm.exp(E_r / pybamm.constants.R * (1 / 298.15 - 1 / T)) | ||
|
||
return ( | ||
m_ref * arrhenius * c_e**0.5 * c_s_surf**0.5 * (c_s_max - c_s_surf) ** 0.5 | ||
) | ||
|
||
|
||
def electrolyte_diffusivity_Nyman2008(c_e, T): | ||
""" | ||
Diffusivity of LiPF6 in EC:EMC (3:7) as a function of ion concentration. The data | ||
comes from [1] | ||
References | ||
---------- | ||
.. [1] A. Nyman, M. Behm, and G. Lindbergh, "Electrochemical characterisation and | ||
modelling of the mass transport phenomena in LiPF6-EC-EMC electrolyte," | ||
Electrochim. Acta, vol. 53, no. 22, pp. 6356–6365, 2008. | ||
Parameters | ||
---------- | ||
c_e: :class:`pybamm.Symbol` | ||
Dimensional electrolyte concentration | ||
T: :class:`pybamm.Symbol` | ||
Dimensional temperature | ||
Returns | ||
------- | ||
:class:`pybamm.Symbol` | ||
Solid diffusivity | ||
""" | ||
|
||
D_c_e = 8.794e-11 * (c_e / 1000) ** 2 - 3.972e-10 * (c_e / 1000) + 4.862e-10 | ||
|
||
# Nyman et al. (2008) does not provide temperature dependence | ||
|
||
return D_c_e | ||
|
||
|
||
def electrolyte_conductivity_Nyman2008(c_e, T): | ||
""" | ||
Conductivity of LiPF6 in EC:EMC (3:7) as a function of ion concentration. The data | ||
comes from [1]. | ||
References | ||
---------- | ||
.. [1] A. Nyman, M. Behm, and G. Lindbergh, "Electrochemical characterisation and | ||
modelling of the mass transport phenomena in LiPF6-EC-EMC electrolyte," | ||
Electrochim. Acta, vol. 53, no. 22, pp. 6356–6365, 2008. | ||
Parameters | ||
---------- | ||
c_e: :class:`pybamm.Symbol` | ||
Dimensional electrolyte concentration | ||
T: :class:`pybamm.Symbol` | ||
Dimensional temperature | ||
Returns | ||
------- | ||
:class:`pybamm.Symbol` | ||
Solid diffusivity | ||
""" | ||
|
||
sigma_e = ( | ||
0.1297 * (c_e / 1000) ** 3 - 2.51 * (c_e / 1000) ** 1.5 + 3.329 * (c_e / 1000) | ||
) | ||
|
||
# Nyman et al. (2008) does not provide temperature dependence | ||
|
||
return sigma_e | ||
|
||
|
||
# Load data in the appropriate format | ||
path, _ = os.path.split(os.path.abspath(__file__)) | ||
graphite_ocp_Enertech_Ai2020_data = pybamm.parameters.process_1D_data( | ||
"graphite_ocp_Enertech_Ai2020.csv", path=path | ||
) | ||
|
||
|
||
def graphite_ocp_Enertech_Ai2020(sto): | ||
name, (x, y) = graphite_ocp_Enertech_Ai2020_data | ||
return pybamm.Interpolant(x, y, sto, name=name, interpolator="cubic") | ||
|
||
|
||
# Call dict via a function to avoid errors when editing in place | ||
def get_parameter_values(): | ||
""" | ||
Parameters for a composite graphite/silicon electrode, from the paper | ||
Weilong Ai, Niall Kirkaldy, Yang Jiang, Gregory Offer, Huizhi Wang, and Billy | ||
Wu. A composite electrode model for lithium-ion batteries with silicon/graphite | ||
negative electrodes. Journal of Power Sources, 527:231142, 2022. URL: | ||
https://www.sciencedirect.com/science/article/pii/S0378775322001604, | ||
doi:https://doi.org/10.1016/j.jpowsour.2022.231142. | ||
based on the paper | ||
Chang-Hui Chen, Ferran Brosa Planella, Kieran O'Regan, Dominika Gastol, W. | ||
Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for | ||
Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The | ||
Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050. | ||
and references therein. | ||
SEI parameters are example parameters for composite SEI on silicon/graphite. Both | ||
phases use the same values, from the paper. | ||
Xiao Guang Yang, Yongjun Leng, Guangsheng Zhang, Shanhai Ge, and Chao Yang Wang. | ||
Modeling of lithium plating induced aging of lithium-ion batteries: transition | ||
from linear to nonlinear aging. Journal of Power Sources, 360:28–40, 2017. | ||
doi:10.1016/j.jpowsour.2017.05.110. | ||
""" | ||
|
||
return { | ||
"chemistry": "lithium_ion", | ||
# sei | ||
"Primary: Ratio of lithium moles to SEI moles": 2.0, | ||
"Primary: Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, | ||
"Primary: Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, | ||
"Primary: SEI resistivity [Ohm.m]": 200000.0, | ||
"Primary: Initial inner SEI thickness [m]": 2.5e-09, | ||
"Primary: Initial outer SEI thickness [m]": 2.5e-09, | ||
"Primary: EC initial concentration in electrolyte [mol.m-3]": 4541.0, | ||
"Primary: EC diffusivity [m2.s-1]": 2e-18, | ||
"Primary: SEI kinetic rate constant [m.s-1]": 1e-12, | ||
"Primary: SEI open-circuit potential [V]": 0.4, | ||
"Primary: SEI growth activation energy [J.mol-1]": 0.0, | ||
"Secondary: Ratio of lithium moles to SEI moles": 2.0, | ||
"Secondary: Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, | ||
"Secondary: Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, | ||
"Secondary: SEI resistivity [Ohm.m]": 200000.0, | ||
"Secondary: Initial inner SEI thickness [m]": 2.5e-09, | ||
"Secondary: Initial outer SEI thickness [m]": 2.5e-09, | ||
"Secondary: EC initial concentration in electrolyte [mol.m-3]": 4541.0, | ||
"Secondary: EC diffusivity [m2.s-1]": 2e-18, | ||
"Secondary: SEI kinetic rate constant [m.s-1]": 1e-12, | ||
"Secondary: SEI open-circuit potential [V]": 0.4, | ||
"Secondary: SEI growth activation energy [J.mol-1]": 0.0, | ||
# cell | ||
"Positive current collector thickness [m]": 1.2e-05, | ||
"Positive electrode thickness [m]": 8.52e-05, | ||
"Separator thickness [m]": 1.2e-05, | ||
"Electrode height [m]": 0.065, | ||
"Electrode width [m]": 1.58, | ||
"Cell cooling surface area [m2]": 0.00531, | ||
"Cell volume [m3]": 2.42e-05, | ||
"Cell thermal expansion coefficient [m.K-1]": 1.1e-06, | ||
"Positive current collector conductivity [S.m-1]": 58411000.0, | ||
"Positive current collector density [kg.m-3]": 8960.0, | ||
"Positive current collector specific heat capacity [J.kg-1.K-1]": 385.0, | ||
"Positive current collector thermal conductivity [W.m-1.K-1]": 401.0, | ||
"Nominal cell capacity [A.h]": 5.0, | ||
"Current function [A]": 5.0, | ||
"Contact resistance [Ohm]": 0, | ||
# positive electrode | ||
"Positive electrode conductivity [S.m-1]": 215.0, | ||
"Primary: Maximum concentration in positive electrode [mol.m-3]": 28700.0, | ||
"Primary: Initial concentration in positive electrode [mol.m-3]": 27700.0, | ||
"Primary: Positive electrode diffusivity [m2.s-1]": 5.5e-14, | ||
"Primary: Positive electrode OCP [V]": graphite_ocp_Enertech_Ai2020, | ||
"Negative electrode porosity": 0.25, | ||
"Primary: Positive electrode active material volume fraction": 0.735, | ||
"Primary: Positive particle radius [m]": 5.86e-06, | ||
"Positive electrode Bruggeman coefficient (electrolyte)": 1.5, | ||
"Positive electrode Bruggeman coefficient (electrode)": 0, | ||
"Positive electrode charge transfer coefficient": 0.5, | ||
"Positive electrode double-layer capacity [F.m-2]": 0.2, | ||
"Primary: Positive electrode exchange-current density [A.m-2]" | ||
"": graphite_LGM50_electrolyte_exchange_current_density_Chen2020, | ||
"Primary: Positive electrode density [kg.m-3]": 1657.0, | ||
"Positive electrode specific heat capacity [J.kg-1.K-1]": 700.0, | ||
"Positive electrode thermal conductivity [W.m-1.K-1]": 1.7, | ||
"Primary: Positive electrode OCP entropic change [V.K-1]": 0.0, | ||
"Secondary: Maximum concentration in positive electrode [mol.m-3]": 278000.0, | ||
"Secondary: Initial concentration in positive electrode [mol.m-3]": 276610.0, | ||
"Secondary: Positive electrode diffusivity [m2.s-1]": 1.67e-14, | ||
"Secondary: Positive electrode lithiation OCP [V]" | ||
"": silicon_ocp_lithiation_Mark2016, | ||
"Secondary: Positive electrode delithiation OCP [V]" | ||
"": silicon_ocp_delithiation_Mark2016, | ||
"Secondary: Positive electrode active material volume fraction": 0.015, | ||
"Secondary: Positive particle radius [m]": 1.52e-06, | ||
"Secondary: Positive electrode exchange-current density [A.m-2]" | ||
"": silicon_LGM50_electrolyte_exchange_current_density_Chen2020, | ||
"Secondary: Positive electrode density [kg.m-3]": 2650.0, | ||
"Secondary: Positive electrode OCP entropic change [V.K-1]": 0.0, | ||
# separator | ||
"Separator porosity": 0.47, | ||
"Separator Bruggeman coefficient (electrolyte)": 1.5, | ||
"Separator density [kg.m-3]": 397.0, | ||
"Separator specific heat capacity [J.kg-1.K-1]": 700.0, | ||
"Separator thermal conductivity [W.m-1.K-1]": 0.16, | ||
# electrolyte | ||
"Initial concentration in electrolyte [mol.m-3]": 1000.0, | ||
"Cation transference number": 0.2594, | ||
"Thermodynamic factor": 1.0, | ||
"Electrolyte diffusivity [m2.s-1]": electrolyte_diffusivity_Nyman2008, | ||
"Electrolyte conductivity [S.m-1]": electrolyte_conductivity_Nyman2008, | ||
# experiment | ||
"Reference temperature [K]": 298.15, | ||
"Total heat transfer coefficient [W.m-2.K-1]": 10.0, | ||
"Ambient temperature [K]": 298.15, | ||
"Number of electrodes connected in parallel to make a cell": 1.0, | ||
"Number of cells connected in series to make a battery": 1.0, | ||
"Lower voltage cut-off [V]": 2.5, | ||
"Upper voltage cut-off [V]": 4.2, | ||
"Initial concentration in positive electrode [mol.m-3]": 29866.0, | ||
"Initial temperature [K]": 298.15, | ||
# citations | ||
"citations": ["Chen2020", "Ai2022"], | ||
} |
Oops, something went wrong.