Skip to content

Methods for data segmentation under a sparse regression model

License

Notifications You must be signed in to change notification settings

Dom-Owens-UoB/moseg

Repository files navigation

moseg

Methods for data segmentation under a sparse regression model. See

High-dimensional data segmentation in regression settings permitting heavy tails and temporal dependence, Haeran Cho and Dom Owens, arxiv.org/abs/2209.08892

Installation

package moseg installable via

devtools::install_github("https://github.com/Dom-Owens-UoB/moseg")

Usage

We can simulate from a piecewise sparse regression model via

set.seed(111)
dat <- moseg.sim(500, 50, q = 2, kappa = 4)

Identify change points:

out <- moseg(dat$X, dat$y, 100, do.scale = FALSE)

Multiscale:

out <- moseg.ms(dat$X, dat$y, c(50,100,150), do.scale = FALSE)

Using cross-validation:

cv <- moseg.cv(dat$X, dat$y, 50, do.scale = FALSE)
cv.ms <- moseg.ms.cv(dat$X, dat$y, c(50,100,150), do.scale = FALSE)

Releases

No releases published

Packages

No packages published

Languages