After cloning the repository and installing the (Nvidia) Docker:
$ docker build -f ./docker/DockerfileCUDA11 --rm -t rooftop .
$ docker run --ipc=host --name rooftopml --gpus all -it --network host -v "$PWD:/home/docker/repository" rooftop /bin/bash
If you are using a machine without Nvidia GPU, remove the --gpus all
parameter.
docker start -i rooftopml
python tools/create_images_dataset.py -id {path to images} -ad {path to masks} -od {output directory} -ts 512 512 -st 512 512 -sc 0.3 -fmt .png -w 12
Arguments:
-ts
size of tiles (x, y)-st
stride (x, y)-sc
Scale factor-fmt
output image format-w
number of workers to be spawned for tiling
python tools/train.py -c configs/airs_pretrain_unet_dwt.yaml
To be able to use mmdetection library, please refer to the original documentation of the library to install the package inside the container.
python tools/coco_annotations.py -i data/airs_proto/train -o data/airs_proto/train_annotations.json --minimize
python tools/coco_annotations.py -i data/airs_proto/val -o data/airs_proto/val_annotations.json --minimize
python tools/coco_annotations.py -i data/airs_proto/test -o data/airs_proto/test_annotations.json --minimize
Arguments:
-id
Directory containing dataset- -
od
JSON file to write to -m
Whether to minimize the output json file or not
Training Point Rend
python mmdetection/tools/train.py configs/pointrend_r50.py
python tools/inference_geotiff.py -c configs/airs_pretrain_unet_dwt_inference.yaml -id data/inference_examples/