A comprehensive machine learning classification demonstration using multiple algorithms on the Breast Cancer Wisconsin dataset.
- Python 3.9+
- Poetry
# Install Poetry (if not already installed)
pip install poetry
# Clone the repository
git clone https://github.com/yourusername/classification.git
cd classification
# Install dependencies
poetry install
# Activate the virtual environment
poetry shell
# Run the main script
poetry run classification
classification/
: Source codetests/
: Unit testsnotebooks/
: Jupyter notebooks for interactive exploration
- lightgbm
- Understanding classification techniques
- Model evaluation
- Performance visualization
- Feature importance analysis
## Jupyter Notebook (notebooks/demo_notebook.ipynb)
<antArtifact identifier="demo-notebook" type="application/vnd.ant.code" language="python" title="Jupyter Notebook Demo">
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Classification Demo Notebook\n",
"\n",
"Interactive exploration of machine learning classification techniques."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from classification_demo.classifier import ClassificationDemo\n",
"\n",
"# Create demo instance\n",
"demo = ClassificationDemo()\n",
"\n",
"# Train and evaluate\n",
"results = demo.train_and_evaluate()\n",
"\n",
"# Print and visualize results\n",
"demo.visualize_results(results)\n",
"demo.plot_feature_importance()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}