Skip to content

Commit

Permalink
Cleanup
Browse files Browse the repository at this point in the history
  • Loading branch information
BloodAxe committed May 7, 2024
1 parent ebea29f commit 67c2008
Show file tree
Hide file tree
Showing 3 changed files with 2 additions and 13 deletions.
1 change: 0 additions & 1 deletion src/super_gradients/common/object_names.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,6 @@ class Optimizers:
RMS_PROP_TF = "RMSpropTF"
LAMB = "Lamb"
LION = "Lion"
RADAM = "RAdam"


class Callbacks:
Expand Down
5 changes: 0 additions & 5 deletions src/super_gradients/common/registry/registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,11 +177,6 @@ def warn_if_deprecated(name: str, registry: dict):
Optimizers.RMS_PROP: optim.RMSprop,
}

try:
OPTIMIZERS[Optimizers.RADAM] = optim.RAdam
except (ImportError, AttributeError):
pass

TORCH_LR_SCHEDULERS = {
"StepLR": torch.optim.lr_scheduler.StepLR,
"LambdaLR": torch.optim.lr_scheduler.LambdaLR,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,6 @@ optimizer: AdamW
optimizer_params:
weight_decay: 0.000001

#clip_grad_norm: 1.0

ema: True
ema_params:
decay: 0.9997
Expand All @@ -46,6 +44,7 @@ sync_bn: False
# A batch with the largest loss will be visualized for train and valid loaders
# Visualization images will be logged using configured logger
phase_callbacks: []
#phase_callbacks:
# - ExtremeBatchOBBVisualizationCallback:
# loss_to_monitor: "YoloNASRLoss/loss"
# max: True
Expand All @@ -56,7 +55,6 @@ phase_callbacks: []
#
# post_prediction_callback:
# _target_: super_gradients.training.models.detection_models.yolo_nas_r.yolo_nas_r_post_prediction_callback.YoloNASRPostPredictionCallback
# #output_device: cpu
# score_threshold: 0.25
# pre_nms_max_predictions: 4096
# post_nms_max_predictions: 512
Expand All @@ -70,12 +68,12 @@ valid_metrics_list:
include_classwise_ap: True
post_prediction_callback:
_target_: super_gradients.training.models.detection_models.yolo_nas_r.yolo_nas_r_post_prediction_callback.YoloNASRPostPredictionCallback
#output_device: cpu
score_threshold: 0.1
pre_nms_max_predictions: 4096
post_nms_max_predictions: 512
nms_iou_threshold: 0.6

# One can use COCO-style mAP implementation that sweeps over 0.5..0.95 thresholds and uses 101-point recall thresholds
# - OBBDetectionMetrics_050_095:
# num_cls: ${dataset_params.num_classes}
# class_names: ${dataset_params.class_names}
Expand All @@ -90,9 +88,6 @@ valid_metrics_list:

pre_prediction_callback:

#metric_to_watch: 'YoloNASRLoss/loss'
#greater_metric_to_watch_is_better: False

metric_to_watch: '[email protected]'
greater_metric_to_watch_is_better: True

Expand Down

0 comments on commit 67c2008

Please sign in to comment.