Skip to content

Commit

Permalink
async?
Browse files Browse the repository at this point in the history
  • Loading branch information
Cryoris committed Aug 23, 2022
1 parent 08a78d5 commit d2cf90b
Showing 1 changed file with 234 additions and 0 deletions.
234 changes: 234 additions & 0 deletions Async subroutines.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,234 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "fa8b70aa",
"metadata": {},
"source": [
"# To sync or not to sync\n",
"\n",
"`Estimator` and `Sampler` primitives currently only allow asynchronous calls:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b6d26f95",
"metadata": {},
"outputs": [],
"source": [
"est = Estimator()\n",
"job = est.run([circuit], [operator], [values])\n",
"result = job.result()"
]
},
{
"cell_type": "markdown",
"id": "c88fc5eb",
"metadata": {},
"source": [
"In context of the algorithms, we discussed whether we want to follow the same interface for advanced subroutines like gradients or fidelities, as"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2d32cec8",
"metadata": {},
"outputs": [],
"source": [
"grad = ParameterShiftEstimatorGradient()\n",
"job = grad.run([circuit], [operator], [values])\n",
"result = job.result()"
]
},
{
"cell_type": "markdown",
"id": "40dfd676",
"metadata": {},
"source": [
" Alternatively we would only allow synchronous calls as"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9495b9a",
"metadata": {},
"outputs": [],
"source": [
"grad = ParameterShiftEstimatorGradient()\n",
"result = grad.evaluate([circuit], [operator], [values])"
]
},
{
"cell_type": "markdown",
"id": "4fef8a91",
"metadata": {},
"source": [
"### Pro sync\n",
"\n",
"* easier syntax\n",
"* \"where do we draw the line?\" -- if subroutines have `.run` do algorithms also need it?"
]
},
{
"cell_type": "markdown",
"id": "0a0a12e3",
"metadata": {},
"source": [
"### Pro async\n",
"\n",
"* consistency with other estimator and sampler\n",
"* subroutines and primitives are used in the same piece of code -- different signatures look weird"
]
},
{
"cell_type": "markdown",
"id": "9c6cfc4e",
"metadata": {},
"source": [
"### Examples"
]
},
{
"cell_type": "markdown",
"id": "385ec5be",
"metadata": {},
"source": [
"#### VQE \"sync\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "963dab2e",
"metadata": {},
"outputs": [],
"source": [
"class VQE(MinimumEigensolver):\n",
" ...\n",
" \n",
" def compute_minimum_eigenvalue(self, operator):\n",
" \n",
" def energy(theta):\n",
" job = self.estimator.run([self.ansatz], [operator], [theta])\n",
" return job.result()\n",
" \n",
" def gradient(theta):\n",
" return self.gradient.evaluate([self.ansatz], [operator], [theta])\n",
" \n",
" result = self.optimizer.minimize(energy, initial_guess, jac=gradient)"
]
},
{
"cell_type": "markdown",
"id": "25f430b5",
"metadata": {},
"source": [
"### VQE \"all async\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c10ca846",
"metadata": {},
"outputs": [],
"source": [
"class VQE(MinimumEigensolver):\n",
" ...\n",
" \n",
" def compute_minimum_eigenvalue(self, operator):\n",
" \n",
" def energy(theta):\n",
" job = self.run([self.ansatz], [operator], [theta])\n",
" return job.result()\n",
" \n",
" def gradient(theta):\n",
" job = self.gradient.run([self.ansatz], [operator], [theta])\n",
" return job.result()\n",
" \n",
" result = self.optimizer.minimize(energy, initial_guess, jac=gradient)"
]
},
{
"cell_type": "markdown",
"id": "80102684",
"metadata": {},
"source": [
"\n",
"\n",
"#### VQD \"sync\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d2b6b00",
"metadata": {},
"outputs": [],
"source": [
"class VQD(Eigensolver):\n",
" ...\n",
" \n",
" def energy_evaluation(operator, theta, penalty):\n",
" job = self.estimator.run([self.ansatz], [operator], [theta])\n",
" energy = job.result()\n",
" \n",
" overlap = self.fidelity.evaluate([self.ansatz], [self.ansatz], [self.optimal_point], [theta])\n",
" \n",
" return energy + penalty * overlap"
]
},
{
"cell_type": "markdown",
"id": "4d592842",
"metadata": {},
"source": [
"#### VQD \"all async\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d2de0598",
"metadata": {},
"outputs": [],
"source": [
"class VQD(Eigensolver):\n",
" ...\n",
" \n",
" def energy_evaluation(operator, theta, penalty):\n",
" jobs = [\n",
" self.estimator.run([self.ansatz], [operator], [theta]),\n",
" self.fidelity.run([self.ansatz], [self.ansatz], [self.optimal_point], [theta])\n",
" ]\n",
" energy, overlap = [job.result() for job in jobs]\n",
" \n",
" return energy + penalty * overlap"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

0 comments on commit d2cf90b

Please sign in to comment.