forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Integrate byoc preprocess in collage and benchmark (apache#26)
Integrate implicit call of BYOC preprocessing module into collage tunning module and enable benchmark script for adreno targets. Benchmark results: **Networks | OpenCL texture | OpenCLML | Collage** resnet-18-float32 | 0.010584622 | 0.00720695 | 0.007289728 resnet-18-float16 | 0.007052029 | 0.0045642 | 0.004857585 resnet-34-float32 | 0.016259185 | 0.01242092 | 0.013071063 resnet-34-float16 | 0.011350326 | 0.0073473 | 0.00796802 resnet-50-float32 | 0.019188419 | 0.02085548 | 0.018910226 resnet-50-float16 | 0.01338978 | 0.01199576 | 0.011089206 densenet-121-float32 | 0.025430062 | 0.01798478 | 0.013212844 densenet-121-float16 | 0.012384599 | 0.01101491 | 0.008722716 inception_v3-float32 | 0.040408253 | 0.02229727 | 0.022636675 inception_v3-float16 | 0.029910533 | 0.01368941 | 0.014519823 mobilenet-float32 | 0.004093148 | 0.00367917 | 0.003189258 mobilenet-float16 | 0.00280268 | 0.00244494 | 0.002101514 </body> </html> Co-authored-by: krishnaraj36 <[email protected]>
- Loading branch information
1 parent
51260a6
commit 310466a
Showing
8 changed files
with
525 additions
and
242 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,384 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
"""Compares Collage with various other baselines.""" | ||
import argparse | ||
import tvm | ||
from tvm import relay | ||
import logging | ||
import os | ||
import sys | ||
import numpy as np | ||
from tvm.relay import testing | ||
from tvm.contrib.utils import tempdir | ||
from tvm import rpc | ||
from tvm.relay.build_module import bind_params_by_name | ||
from tvm import autotvm | ||
from tvm.runtime.vm import VirtualMachine | ||
import tvm.contrib.graph_executor as runtime | ||
from tvm.contrib import utils, ndk | ||
from tvm.relay.collage.collage import * | ||
from tvm.relay.op.contrib import clml | ||
|
||
logging.basicConfig(level=logging.INFO) | ||
|
||
|
||
### | ||
### How aggressively to look for candidates? | ||
### | ||
TVM_MAX_DEPTH = 8 | ||
BYOC_MAX_DEPTH = 8 | ||
|
||
## | ||
## Default config definition | ||
## | ||
HOST = tvm.target.Target("llvm -mtriple=arm64-linux-android") | ||
OPENCL = tvm.target.Target("opencl -device=adreno", HOST) | ||
NDK_CC = os.getenv("TVM_NDK_CC", "aarch64-linux-android-g++") | ||
|
||
|
||
def print_progress(msg): | ||
"""print progress message | ||
Parameters | ||
---------- | ||
msg: str | ||
The message to print | ||
""" | ||
sys.stdout.write(msg + "\r") | ||
sys.stdout.flush() | ||
|
||
|
||
def tune_tasks( | ||
tasks, | ||
measure_option, | ||
tuner="xgb", | ||
n_trial=1024, | ||
early_stopping=None, | ||
log_filename="tuning.log", | ||
): | ||
from tvm.autotvm.tuner import XGBTuner | ||
|
||
tmp_log_file = log_filename + ".tmp" | ||
|
||
for i, tsk in enumerate(reversed(tasks)): | ||
print("Task: ", tsk) | ||
prefix = "[Task %2d/%2d] " % (i + 1, len(tasks)) | ||
|
||
# create tuner | ||
if tuner == "xgb": | ||
tuner_obj = XGBTuner(tsk, loss_type="reg") | ||
elif tuner == "xgb_knob": | ||
tuner_obj = XGBTuner(tsk, loss_type="reg", feature_type="knob") | ||
elif tuner == "xgb_itervar": | ||
tuner_obj = XGBTuner(tsk, loss_type="reg", feature_type="itervar") | ||
elif tuner == "xgb_curve": | ||
tuner_obj = XGBTuner(tsk, loss_type="reg", feature_type="curve") | ||
elif tuner == "xgb_rank": | ||
tuner_obj = XGBTuner(tsk, loss_type="rank") | ||
elif tuner == "xgb_rank_knob": | ||
tuner_obj = XGBTuner(tsk, loss_type="rank", feature_type="knob") | ||
elif tuner == "xgb_rank_itervar": | ||
tuner_obj = XGBTuner(tsk, loss_type="rank", feature_type="itervar") | ||
elif tuner == "xgb_rank_curve": | ||
tuner_obj = XGBTuner(tsk, loss_type="rank", feature_type="curve") | ||
elif tuner == "xgb_rank_binary": | ||
tuner_obj = XGBTuner(tsk, loss_type="rank-binary") | ||
elif tuner == "xgb_rank_binary_knob": | ||
tuner_obj = XGBTuner(tsk, loss_type="rank-binary", feature_type="knob") | ||
elif tuner == "xgb_rank_binary_itervar": | ||
tuner_obj = XGBTuner(tsk, loss_type="rank-binary", feature_type="itervar") | ||
elif tuner == "xgb_rank_binary_curve": | ||
tuner_obj = XGBTuner(tsk, loss_type="rank-binary", feature_type="curve") | ||
elif tuner == "ga": | ||
tuner_obj = GATuner(tsk, pop_size=50) | ||
elif tuner == "random": | ||
tuner_obj = RandomTuner(tsk) | ||
elif tuner == "gridsearch": | ||
tuner_obj = GridSearchTuner(tsk) | ||
else: | ||
raise ValueError("Invalid tuner: " + tuner) | ||
|
||
tsk_trial = min(n_trial, len(tsk.config_space)) | ||
tuner_obj.tune( | ||
n_trial=tsk_trial, | ||
early_stopping=early_stopping, | ||
measure_option=measure_option, | ||
callbacks=[ | ||
autotvm.callback.progress_bar(tsk_trial, prefix=prefix), | ||
autotvm.callback.log_to_file(tmp_log_file), | ||
], | ||
) | ||
|
||
autotvm.record.pick_best(tmp_log_file, log_filename) | ||
|
||
|
||
########### Collage Drivers ########### | ||
|
||
|
||
def compile_and_run(label, model, targets, inputs): | ||
"""Compile model for target and run it with profiling.""" | ||
logging.info(f"Compiling {model['name']} using {label} with {targets}...") | ||
mod = model["mod"] | ||
exe = tvm.relay.vm.compile(mod, target=targets, params=model["params"]) | ||
lib = exe.mod | ||
temp = utils.tempdir() | ||
dso_binary = "dev_lib_cl.so" | ||
dso_binary_path = temp.relpath(dso_binary) | ||
logging.info(f"Exporting library to {dso_binary_path}...") | ||
lib.export_library(dso_binary_path, cc=NDK_CC) | ||
tracker = rpc.connect_tracker(args.host, args.port) | ||
remote = tracker.request(args.rpc_key, priority=0, session_timeout=600) | ||
ctx = remote.cl(0) | ||
remote.upload(dso_binary_path) | ||
rlib = remote.load_module(dso_binary) | ||
vm_factory = tvm.runtime.vm.VirtualMachine(rlib, ctx, "naive") | ||
func_name = "main" | ||
main_args = {v.name_hint: arg_for(v.checked_type, ctx) for v in mod[func_name].params} | ||
profile = vm_factory.benchmark( | ||
ctx, repeat=5, number=20, min_repeat_ms=0, func_name=func_name, **main_args | ||
) | ||
return profile.mean | ||
|
||
|
||
def collage(model, input_data, tune_log=""): | ||
"""Run the Collage partitioner for a set of Opencl Adreno related targets and profile the result""" | ||
logging.info(f"collage | {model['name']}") | ||
logging.info("-------------- BEGIN ORIGINAL --------------") | ||
logging.info(model["mod"]) | ||
logging.info("-------------- END ORIGINAL ----------------") | ||
with autotvm.apply_history_best(tune_log): | ||
targets = [] | ||
targets.append(OPENCL) | ||
use_fp16 = model["main_dtype"] == "float16" | ||
targets.append(tvm.target.Target("clml", HOST)) | ||
|
||
# Register byoc fusion style for compiler with available | ||
# options [compiler.NoFusion | compiler.TVMFusion | compiler.MaxDepthFusion] | ||
config = { | ||
"relay.collage.tvm_max_depth": TVM_MAX_DEPTH, | ||
"relay.collage.byoc_max_depth": BYOC_MAX_DEPTH, | ||
"relay.collage.byoc_fusion_style": ["clml.NoFusion"], | ||
} | ||
logging.info(f"Using PassContext(config={config}") | ||
ctxt = tvm.transform.PassContext(config=config) | ||
config = tvm.target.make_compilation_config(ctxt, targets) | ||
with ctxt: | ||
mod = model["mod"] | ||
"""Collage partition with tvm opencl and clml target on rpc device""" | ||
mod = tvm.relay.transform.CollagePartition( | ||
config, | ||
cost_estimator=CostEstimator( | ||
host=args.host, port=args.port, rpc_key=args.rpc_key, ndk_cc=NDK_CC | ||
), | ||
)(mod) | ||
partitioned_model = model.copy() | ||
partitioned_model["mod"] = mod | ||
logging.info("-------------- BEGIN PARTITIONED --------------") | ||
logging.info(partitioned_model["mod"]) | ||
logging.info("-------------- END PARTITIONED ----------------") | ||
return compile_and_run("collage", partitioned_model, targets, input_data) | ||
|
||
|
||
def just_clml(model, input_data, tune_log=""): | ||
"""Run partition_for_clml, complete the compilation with TVM, and profile the result.""" | ||
logging.info(f"just_clml | {model['name']}") | ||
logging.info("-------------- BEGIN ORIGINAL --------------") | ||
logging.info(model["mod"]) | ||
logging.info("-------------- END ORIGINAL ----------------") | ||
with autotvm.apply_history_best(tune_log): | ||
with tvm.transform.PassContext(opt_level=3): | ||
logging.info("Partitioning for CLML...") | ||
mod = tvm.relay.op.contrib.clml.partition_for_clml(model["mod"], model["params"]) | ||
partitioned_model = model.copy() | ||
partitioned_model["mod"] = mod | ||
logging.info("-------------- BEGIN PARTITIONED --------------") | ||
logging.info(partitioned_model["mod"]) | ||
logging.info("-------------- END PARTITIONED ----------------") | ||
targets = [] | ||
targets.append(OPENCL) | ||
targets.append(tvm.target.Target("clml", HOST)) | ||
return compile_and_run("just_clml", partitioned_model, OPENCL, input_data) | ||
|
||
|
||
def just_tvm(model, input_data, tune_log=""): | ||
"""Compile and profile using vanilla TVM.""" | ||
logging.info(f"just_tvm | {model['name']}") | ||
logging.info("-------------- BEGIN ORIGINAL --------------") | ||
logging.info(model["mod"]) | ||
logging.info("-------------- END ORIGINAL ----------------") | ||
with autotvm.apply_history_best(tune_log): | ||
with tvm.transform.PassContext(opt_level=3): | ||
return compile_and_run("just_tvm", model, OPENCL, input_data) | ||
|
||
|
||
def get_model(model_name, dtype): | ||
|
||
if "mobilenet" in model_name: | ||
mod, params = testing.mobilenet.get_workload(batch_size=1, dtype=dtype) | ||
elif "resnet" in model_name: | ||
n_layer = int(model_name.split("-")[1]) | ||
mod, params = testing.resnet.get_workload(num_layers=n_layer, batch_size=1, dtype=dtype) | ||
elif model_name == "inception_v3": | ||
input_shape = (1, 3, 299, 299) | ||
mod, params = testing.inception_v3.get_workload(batch_size=1, dtype=dtype) | ||
elif "vgg" in model_name: | ||
n_layer = int(model_name.split("-")[1]) | ||
mod, params = testing.vgg.get_workload(num_layers=n_layer, batch_size=1, dtype=dtype) | ||
elif "densenet" in model_name: | ||
n_layer = int(model_name.split("-")[1]) | ||
mod, params = testing.densenet.get_workload( | ||
densenet_size=n_layer, batch_size=1, dtype=dtype | ||
) | ||
elif "squeezenet" in model_name: | ||
version = model_name.split("_v")[1] | ||
mod, params = testing.squeezenet.get_workload(batch_size=1, version=version, dtype=dtype) | ||
|
||
initializer = tvm.relay.testing.init.Xavier() | ||
for param_name in list(params.keys()): | ||
filter_data = np.zeros(params[param_name].shape).astype(params[param_name].dtype) | ||
if len(filter_data.shape) > 1: | ||
initializer("weight", filter_data) | ||
else: | ||
initializer("bias", filter_data) | ||
params[param_name] = tvm.nd.array(filter_data) | ||
|
||
if params: | ||
mod["main"] = bind_params_by_name(mod["main"], params) | ||
mod = tvm.relay.transform.FoldConstant()(mod) | ||
return { | ||
"name": model_name, | ||
"input_shapes": {"data": [1, 3, 224, 224]}, | ||
"input_dtypes": {"data": dtype}, | ||
"mod": mod, | ||
"params": params, | ||
"main_dtype": dtype, | ||
} | ||
|
||
|
||
########### Runners ########### | ||
def evaluate_network(model_name, dtype): | ||
print("Network evaluating .. " + model_name + " " + dtype) | ||
np.random.seed(0) | ||
model = get_model(model_name, dtype) | ||
tune_log = "adreno_v0.01.log" | ||
if args.tune: | ||
# Auto Tuning | ||
tune_log = "adreno-" + model_name + "-" + dtype + ".log" | ||
tuning_options = { | ||
"log_filename": tune_log, | ||
"early_stopping": None, | ||
"measure_option": autotvm.measure_option( | ||
builder=autotvm.LocalBuilder(build_func=ndk.create_shared, timeout=15), | ||
runner=autotvm.RPCRunner( | ||
args.rpc_key, | ||
host=args.host, | ||
port=args.port, | ||
number=3, | ||
timeout=600, | ||
), | ||
), | ||
} | ||
tasks = autotvm.task.extract_from_program( | ||
net, target=OPENCL, target_host=HOST, params=params | ||
) | ||
tune_tasks(tasks, **tuning_options) | ||
|
||
print_progress("%-20s building..." % network) | ||
input_data = {} | ||
for name, shape in model["input_shapes"].items(): | ||
input_data[name] = np.random.uniform(-1.0, 1.0, shape).astype(model["input_dtypes"][name]) | ||
clml_time = just_clml(model, input_data, tune_log) | ||
tvm_time = just_tvm(model, input_data, tune_log) | ||
|
||
"""Run Collage for tvm and clml compiler target.""" | ||
collage_time = collage(model, input_data, tune_log) | ||
return (tvm_time, clml_time, collage_time) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--network", | ||
type=str, | ||
choices=[ | ||
"resnet-18", | ||
"resnet-34", | ||
"resnet-50", | ||
"vgg-16", | ||
"vgg-19", | ||
"densenet-121", | ||
"inception_v3", | ||
"mobilenet", | ||
"squeezenet_v1.0", | ||
"squeezenet_v1.1", | ||
], | ||
help="The name of neural network", | ||
) | ||
parser.add_argument("--host", type=str, default="127.0.0.1") | ||
parser.add_argument("--port", type=int, default=9190) | ||
parser.add_argument("--rpc-key", type=str, default="android") | ||
parser.add_argument( | ||
"--dtype", | ||
type=str, | ||
choices=["float32", "float16"], | ||
help="The data type of neural network", | ||
) | ||
parser.add_argument("--tune", type=bool, default=False) | ||
args = parser.parse_args() | ||
|
||
if args.network is None: | ||
networks = [ | ||
"resnet-18", | ||
"resnet-34", | ||
"resnet-50", | ||
# "vgg-16", | ||
# "vgg-19", | ||
"densenet-121", | ||
"inception_v3", | ||
"mobilenet", | ||
"squeezenet_v1.0", | ||
"squeezenet_v1.1", | ||
] | ||
else: | ||
networks = [args.network] | ||
|
||
if args.dtype is None: | ||
dtypes = ["float32", "float16"] | ||
else: | ||
dtypes = [args.dtype] | ||
|
||
results = {} | ||
net_results = [] | ||
for network in networks: | ||
for dtype in dtypes: | ||
ftime = evaluate_network(network, dtype) | ||
results[network + "-" + dtype] = ftime | ||
# net_results.append([network + "-" + dtype] + list(ftime)) | ||
# np.savetxt("results.txt", np.array(net_results), fmt="%s") | ||
|
||
print("----------------------------------------------------------------------") | ||
print( | ||
"%-30s %-20s %-20s %-20s" | ||
% ("Network Name", "TVM Opencl Time", "CLML Time", "Collage - TVM/CLML Time") | ||
) | ||
print("----------------------------------------------------------------------") | ||
for key, val in results.items(): | ||
print( | ||
"%-30s %-20s %-20s %-20s" | ||
% (key, "%.2f ms" % val[0], "%.2f ms" % val[1], "%.2f ms" % val[2]) | ||
) |
Oops, something went wrong.