Skip to content

Commit

Permalink
Introduce abstractions for TVD slope limiter functions (Durran 1999) and
Browse files Browse the repository at this point in the history
van Leer limiters as in Lin(1994)
Update numerical flux stencils to use tvd limiters
Update column examples and references
Update deformation flow example to use limiters

Co-authored-by: Charles Kawczynski <[email protected]>
  • Loading branch information
akshaysridhar and charleskawczynski committed Dec 17, 2024
1 parent 340603b commit ac86792
Show file tree
Hide file tree
Showing 8 changed files with 896 additions and 6 deletions.
14 changes: 14 additions & 0 deletions .buildkite/pipeline.yml
Original file line number Diff line number Diff line change
Expand Up @@ -1450,6 +1450,20 @@ steps:
- "julia --color=yes --project=.buildkite examples/column/fct_advection.jl"
artifact_paths:
- "examples/column/output/fct_advection/*"

- label: ":computer: Column TVD Slope-limited Advection Eq"
key: "cpu_tvd_column_advect"
command:
- "julia --color=yes --project=.buildkite examples/column/tvd_advection.jl"
artifact_paths:
- "examples/column/output/tvd_advection/*"

- label: ":computer: Column Lin vanLeer Limiter Advection Eq"
key: "cpu_lvl_column_advect"
command:
- "julia --color=yes --project=.buildkite examples/column/vanleer_advection.jl"
artifact_paths:
- "examples/column/output/vanleer_advection/*"

- label: ":computer: Column BB FCT Advection Eq"
key: "cpu_bb_fct_column_advect"
Expand Down
14 changes: 14 additions & 0 deletions docs/refs.bib
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,20 @@ @article{GubaOpt2014
doi = {10.1016/j.jcp.2014.02.029}
}

@article{Lin1994,
author = {Shian-Jiann Lin and Winston C. Chao and Y. C. Sud and G. K. Walker},
title = {A Class of the van Leer-type Transport Schemes and Its Application to the Moisture Transport in a General Circulation Model},
journal = {Monthly Weather Review},
year = {1994},
publisher = {American Meteorological Society},
address = {Boston MA, USA},
volume = {122},
number = {7},
doi = {10.1175/1520-0493(1994)122<1575:ACOTVL>2.0.CO;2},
pages= {1575 - 1593},
url = {https://journals.ametsoc.org/view/journals/mwre/122/7/1520-0493_1994_122_1575_acotvl_2_0_co_2.xml}
}

@article{Nair2005,
title = {A Discontinuous Galerkin Transport Scheme on the Cubed Sphere},
author = {Nair, Ramachandran D and Thomas, Stephen J and Loft, Richard D},
Expand Down
1 change: 1 addition & 0 deletions docs/src/operators.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@ LeftBiasedC2F
RightBiasedC2F
LeftBiasedF2C
RightBiasedF2C
AbstractTVDSlopeLimiter
```

### Derivative operators
Expand Down
209 changes: 209 additions & 0 deletions examples/column/tvd_advection.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,209 @@
using Test
using LinearAlgebra
import ClimaComms
ClimaComms.@import_required_backends
using OrdinaryDiffEqSSPRK: ODEProblem, solve, SSPRK33
using ClimaTimeSteppers

import ClimaCore:
Fields,
Domains,
Topologies,
Meshes,
DataLayouts,
Operators,
Geometry,
Spaces


# Advection Equation, with constant advective velocity (so advection form = flux form)
# ∂_t y + w ∂_z y = 0
# the solution translates to the right at speed w,
# so at time t, the solution is y(z - w * t)

# visualization artifacts
ENV["GKSwstype"] = "nul"
using ClimaCorePlots, Plots
Plots.GRBackend()
dir = "tvd_advection"
path = joinpath(@__DIR__, "output", dir)
mkpath(path)


function tendency!(yₜ, y, parameters, t)
(; w, Δt, limiter_method) = parameters
FT = Spaces.undertype(axes(y.q))
bcvel = pulse(-π, t, z₀, zₕ, z₁)
divf2c = Operators.DivergenceF2C(
bottom = Operators.SetValue(Geometry.WVector(FT(0))),
top = Operators.SetValue(Geometry.WVector(FT(0))),
)
upwind1 = Operators.UpwindBiasedProductC2F(
bottom = Operators.Extrapolate(),
top = Operators.Extrapolate(),
)
upwind3 = Operators.Upwind3rdOrderBiasedProductC2F(
bottom = Operators.ThirdOrderOneSided(),
top = Operators.ThirdOrderOneSided(),
)
VanLeerMethod = Operators.LinVanLeerC2F(
bottom = Operators.FirstOrderOneSided(),
top = Operators.FirstOrderOneSided(),
)
FCTZalesak = Operators.FCTZalesak(
bottom = Operators.FirstOrderOneSided(),
top = Operators.FirstOrderOneSided(),
)
TVDSlopeLimited = Operators.TVDSlopeLimitedFlux(
bottom = Operators.FirstOrderOneSided(),
top = Operators.FirstOrderOneSided(),
method = limiter_method,
)

If = Operators.InterpolateC2F()

if limiter_method == "Zalesak"
@. yₜ.q =
-divf2c(
upwind1(w, y.q) + FCTZalesak(
upwind3(w, y.q) - upwind1(w, y.q),
y.q / Δt,
y.q / Δt - divf2c(upwind1(w, y.q)),
),
)
elseif limiter_method == "LinVanLeerC2F"
@. yₜ.q = -divf2c(VanLeerMethod(w, y.q, Δt))
else
Δfluxₕ = @. w * If(y.q)
Δfluxₗ = @. upwind1(w, y.q)
@. yₜ.q =
-divf2c(
upwind1(w, y.q) +
TVDSlopeLimited(upwind3(w, y.q) - upwind1(w, y.q), y.q / Δt, w),
)
end
end

# Define a pulse wave or square wave

FT = Float64
t₀ = FT(0.0)
t₁ = FT(6)
z₀ = FT(0.0)
zₕ = FT(2π)
z₁ = FT(1.0)
speed = FT(-1.0)
pulse(z, t, z₀, zₕ, z₁) = abs(z - speed * t) zₕ ? z₁ : z₀

n = 2 .^ 8
elemlist = 2 .^ [3, 4, 5, 6, 7, 8, 9, 10]
Δt = FT(0.3) * (20π / n)
@info "Timestep Δt[s]: $(Δt)"

domain = Domains.IntervalDomain(
Geometry.ZPoint{FT}(-10π),
Geometry.ZPoint{FT}(10π);
boundary_names = (:bottom, :top),
)

stretch_fns = [Meshes.Uniform()]
plot_string = ["uniform"]

for (i, stretch_fn) in enumerate(stretch_fns)
limiter_methods = (
Operators.RZeroLimiter(),
Operators.RMaxLimiter(),
Operators.KorenLimiter(),
Operators.SuperbeeLimiter(),
Operators.MonotonizedCentralLimiter(),
"Zalesak",
"LinVanLeerC2F",
)
for (j, limiter_method) in enumerate(limiter_methods)
@info (limiter_method, stretch_fn)
mesh = Meshes.IntervalMesh(domain, stretch_fn; nelems = n)
cent_space = Spaces.CenterFiniteDifferenceSpace(mesh)
face_space = Spaces.FaceFiniteDifferenceSpace(cent_space)
z = Fields.coordinate_field(cent_space).z
O = ones(FT, face_space)

# Initial condition
q_init = pulse.(z, 0.0, z₀, zₕ, z₁)
y = Fields.FieldVector(q = q_init)

# Unitary, constant advective velocity
w = Geometry.WVector.(speed .* O)

# Solve the ODE
parameters = (; w, Δt, limiter_method)
prob = ODEProblem(
ClimaODEFunction(; T_exp! = tendency!),
y,
(t₀, t₁),
parameters,
)
sol = solve(
prob,
ExplicitAlgorithm(SSP33ShuOsher()),
dt = Δt,
saveat = Δt,
)

q_final = sol.u[end].q
q_analytic = pulse.(z, t₁, z₀, zₕ, z₁)

err = norm(q_final .- q_analytic)
rel_mass_err = norm((sum(q_final) - sum(q_init)) / sum(q_init))

if j == 1
fig = Plots.plot(q_analytic; label = "Exact", color = :red)
end
linstyl = [:dash, :dot, :dashdot, :dashdotdot, :dash, :solid, :solid]
clrs = [:orange, :gray, :green, :maroon, :pink, :blue, :black]
if limiter_method == "Zalesak"
fig = plot!(
q_final;
label = "Zalesak",
linestyle = linstyl[j],
color = clrs[j],
dpi = 400,
xlim = (-0.5, 1.1),
ylim = (-15, 10),
)
elseif limiter_method == "LinVanLeerC2F"
fig = plot!(
q_final;
label = "LinVanLeer",
linestyle = linstyl[j],
color = clrs[j],
dpi = 400,
xlim = (-0.5, 1.1),
ylim = (-15, 10),
)
else
fig = plot!(
q_final;
label = "$(typeof(limiter_method))"[21:end],
linestyle = linstyl[j],
color = clrs[j],
dpi = 400,
xlim = (-0.5, 1.1),
ylim = (-15, 10),
)
end
fig = plot!(legend = :outerbottom, legendcolumns = 2)
if j == length(limiter_methods)
Plots.png(
fig,
joinpath(
path,
"SlopeLimitedFluxSolution_" *
"$(typeof(limiter_method))"[21:end] *
".png",
),
)
end
@test err 0.25
@test rel_mass_err 10eps()
end
end
Loading

0 comments on commit ac86792

Please sign in to comment.