Skip to content

Commit

Permalink
Add cloud fraction diagnostics
Browse files Browse the repository at this point in the history
  • Loading branch information
trontrytel committed Dec 12, 2023
1 parent b26b78b commit 8d894d1
Show file tree
Hide file tree
Showing 17 changed files with 323 additions and 175 deletions.
3 changes: 3 additions & 0 deletions config/default_configs/default_config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,9 @@ idealized_clouds:
idealized_insolation:
help: "Use idealized insolation in radiation model [`false`, `true` (default)]"
value: true
dt_cloud_fraction:
help: "Time between calling cloud fraction update"
value: "3hours"


config:
Expand Down
1 change: 1 addition & 0 deletions config/model_configs/single_column_precipitation_test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ z_stretch: false
dt: "10secs"
t_end: "1500secs"
dt_save_to_disk: "500secs"
dt_cloud_fraction: "60secs"
moist: "nonequil"
precip_model: "1M"
precip_upwinding: "first_order"
Expand Down
5 changes: 5 additions & 0 deletions examples/hybrid/driver.jl
Original file line number Diff line number Diff line change
Expand Up @@ -175,5 +175,10 @@ if config.parsed_args["check_precipitation"]
@test all(
ClimaCore.isapprox(Yₜ_ρ[colidx], Yₜ_ρqₜ[colidx], rtol = eps(FT)),
)

# cloud fraction diagnostics
@assert !any(isnan, sol.prob.p.precomputed.ᶜcloud_fraction[colidx])
@test minimum(sol.prob.p.precomputed.ᶜcloud_fraction[colidx]) >= FT(0)
@test maximum(sol.prob.p.precomputed.ᶜcloud_fraction[colidx]) <= FT(1)
end
end
2 changes: 1 addition & 1 deletion src/ClimaAtmos.jl
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ include(joinpath("cache", "prognostic_edmf_precomputed_quantities.jl"))
include(joinpath("cache", "diagnostic_edmf_precomputed_quantities.jl"))
include(joinpath("cache", "precipitation_precomputed_quantities.jl"))
include(joinpath("cache", "precomputed_quantities.jl"))
include(joinpath("cache", "cloud_fraction.jl"))

include(joinpath("initial_conditions", "InitialConditions.jl"))
include(
Expand Down Expand Up @@ -80,7 +81,6 @@ include(joinpath("prognostic_equations", "edmfx_entr_detr.jl"))
include(joinpath("prognostic_equations", "edmfx_tke.jl"))
include(joinpath("prognostic_equations", "edmfx_sgs_flux.jl"))
include(joinpath("prognostic_equations", "edmfx_boundary_condition.jl"))
include(joinpath("prognostic_equations", "cloud_fraction.jl"))
include(
joinpath("parameterized_tendencies", "microphysics", "precipitation.jl"),
)
Expand Down
11 changes: 6 additions & 5 deletions src/cache/cache.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ struct AtmosCache{
COR,
SFC,
GHOST,
ENV,
SGQ,
PREC,
SCRA,
HYPE,
Expand Down Expand Up @@ -49,7 +49,8 @@ struct AtmosCache{
"""Center and face ghost buffers used by DSS"""
ghost_buffer::GHOST

env_thermo_quad::ENV
"""Struct with sub-grid sampling quadrature"""
SG_quad::SGQ

"""Quantities that are updated with set_precomputed_quantities!"""
precomputed::PREC
Expand Down Expand Up @@ -153,11 +154,11 @@ function build_cache(Y, atmos, params, surface_setup, dt, start_date)

sfc_setup = surface_setup(params)
scratch = temporary_quantities(Y, atmos)
env_thermo_quad = SGSQuadrature(FT)
SG_quad = SGSQuadrature(FT)

precomputed = precomputed_quantities(Y, atmos)
precomputing_arguments =
(; atmos, core, params, sfc_setup, precomputed, scratch, dt)
(; atmos, core, params, sfc_setup, precomputed, scratch, dt, SG_quad)

# Coupler compatibility
isnothing(precomputing_arguments.sfc_setup) &&
Expand Down Expand Up @@ -190,7 +191,7 @@ function build_cache(Y, atmos, params, surface_setup, dt, start_date)
core,
sfc_setup,
ghost_buffer,
env_thermo_quad,
SG_quad,
precomputed,
scratch,
hyperdiff,
Expand Down
225 changes: 225 additions & 0 deletions src/cache/cloud_fraction.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,225 @@
import StaticArrays as SA
import ClimaCore.RecursiveApply: rzero, ,

# TODO: write a test with scalars that are linear with z
"""
Diagnose horizontal covariances based on vertical gradients
(i.e. taking turbulence production as the only term)
"""
function covariance_from_grad(coeff, mixing_length, ∇Φ, ∇Ψ)
return 2 * coeff * mixing_length^2 * dot(∇Φ, ∇Ψ)
end

"""
Compute the Smagorinsky length scale from
- c_smag coefficient
- N_eff - buoyancy frequency = sqrt(max(ᶜlinear_buoygrad, 0))
- dz - vertical grid scale
- Pr - Prandtl number
- ϵ_st - strain rate norm
"""
function compute_smagorinsky_length_scale(c_smag, N_eff, dz, Pr, ϵ_st)
FT = eltype(c_smag)
#return N_eff > FT(0) && N_eff < sqrt(2 * Pr * ϵ_st) ?
return N_eff > FT(0) ?
c_smag * dz * max(0, (1 - N_eff^2 / Pr / 2 / ϵ_st))^(1 / 4) :
c_smag * dz
end

"""
Compute the grid scale cloud fraction based on sub-grid scale properties
"""
function set_cloud_fraction!(Y, p, ::DryModel)
@. p.precomputed.ᶜcloud_fraction = 0
end
function set_cloud_fraction!(Y, p, ::Union{EquilMoistModel, NonEquilMoistModel})
(; SG_quad, params) = p

FT = eltype(params)
thermo_params = CAP.thermodynamics_params(params)
ᶜdz = Fields.Δz_field(axes(Y.c))
ᶜlg = Fields.local_geometry_field(Y.c)
(; ᶜts, ᶜp, ᶠu³, ᶜcloud_fraction) = p.precomputed
(; obukhov_length) = p.precomputed.sfc_conditions

ᶜlinear_buoygrad = p.scratch.ᶜtemp_scalar
@. ᶜlinear_buoygrad = buoyancy_gradients(
params,
p.atmos.moisture_model,
EnvBuoyGrad(
BuoyGradMean(),
TD.air_temperature(thermo_params, ᶜts), # t_sat
TD.vapor_specific_humidity(thermo_params, ᶜts), # qv_sat
TD.total_specific_humidity(thermo_params, ᶜts), # qt_sat
TD.liquid_specific_humidity(thermo_params, ᶜts), # q_liq
TD.ice_specific_humidity(thermo_params, ᶜts), # q_ice
TD.dry_pottemp(thermo_params, ᶜts), # θ_sat
TD.liquid_ice_pottemp(thermo_params, ᶜts), # θ_liq_ice_sat
projected_vector_data(
C3,
ᶜgradᵥ(ᶠinterp(TD.virtual_pottemp(thermo_params, ᶜts))),
ᶜlg,
), # ∂θv∂z_unsat
projected_vector_data(
C3,
ᶜgradᵥ(ᶠinterp(TD.total_specific_humidity(thermo_params, ᶜts))),
ᶜlg,
), # ∂qt∂z_sat
projected_vector_data(
C3,
ᶜgradᵥ(ᶠinterp(TD.liquid_ice_pottemp(thermo_params, ᶜts))),
ᶜlg,
), # ∂θl∂z_sat
ᶜp, # p
ifelse(TD.has_condensate(thermo_params, ᶜts), 1, 0),# en_cld_frac
Y.c.ρ, # ρ
),
)

ᶠu = p.scratch.ᶠtemp_C123
@. ᶠu = C123(ᶠinterp(Y.c.uₕ)) + C123(ᶠu³)

ᶜstrain_rate = p.scratch.ᶜtemp_UVWxUVW
compute_strain_rate_center!(ᶜstrain_rate, ᶠu)

ᶜprandtl_nvec = p.scratch.ᶜtemp_scalar
@. ᶜprandtl_nvec = turbulent_prandtl_number(
params,
obukhov_length,
ᶜlinear_buoygrad,
norm_sqr(ᶜstrain_rate),
)

ᶜl_smag = p.scratch.ᶜtemp_scalar_2
@. ᶜl_smag = compute_smagorinsky_length_scale(
CAP.c_smag(params),
sqrt(max(ᶜlinear_buoygrad, 0)), #N_eff
ᶜdz,
ᶜprandtl_nvec,
norm_sqr(ᶜstrain_rate),
)

coeff = FT(2.1) # TODO - move to parameters
@. ᶜcloud_fraction = quad_loop(
SG_quad,
ᶜp,
TD.total_specific_humidity(thermo_params, ᶜts),
TD.liquid_ice_pottemp(thermo_params, ᶜts),
Geometry.WVector(
ᶜgradᵥ(ᶠinterp(TD.total_specific_humidity(thermo_params, ᶜts))),
),
Geometry.WVector(
ᶜgradᵥ(ᶠinterp(TD.liquid_ice_pottemp(thermo_params, ᶜts))),
),
coeff,
ᶜl_smag, # replace with mixing_length when using EDMF SGS
thermo_params,
)
end

"""
function quad_loop(SG_quad, p_c, q_mean, θ_mean, ᶜ∇q, ᶜ∇θ,
coeff, ᶜlength_scale, thermo_params)
where:
- SG_quad is a struct containing information about quadrature type and order
- p_c is the atmospheric pressure
- q_mean, θ_mean is the grid mean q_tot and liquid ice potential temperature
- ᶜ∇q, ᶜ∇θ are the gradients of q_tot and liquid ice potential temperature
- coeff - a free parameter (to be moved into params)
- ᶜlength_scale - mixing length for simulations with EDMF and Smagorinsky
length scale for simulations without EDMF
- thermo params - thermodynamics parameters
The function imposes additional limits on the quadrature points and
returns cloud fraction computed as a sum over quadrature points.
"""
function quad_loop(
SG_quad::SGSQuadrature,
p_c,
q_mean,
θ_mean,
ᶜ∇q,
ᶜ∇θ,
coeff,
ᶜlength_scale,
thermo_params,
)
# Returns the physical values based on quadrature sampling points
# and limited covarainces
function get_x_hat(χ1, χ2)

@assert SG_quad.quadrature_type isa GaussianQuad
FT = eltype(χ1)

q′q′ = covariance_from_grad(coeff, ᶜlength_scale, ᶜ∇q, ᶜ∇q)
θ′θ′ = covariance_from_grad(coeff, ᶜlength_scale, ᶜ∇θ, ᶜ∇θ)
θ′q′ = covariance_from_grad(coeff, ᶜlength_scale, ᶜ∇θ, ᶜ∇q)

# Epsilon defined per typical variable fluctuation
eps_q = eps(FT) * max(eps(FT), q_mean)
eps_θ = eps(FT)

# limit σ_q to prevent negative q_tot_hat
σ_q_lim = -q_mean / (sqrt(FT(2)) * SG_quad.a[1])
σ_q = min(sqrt(q′q′), σ_q_lim)
# Do we also have to try to limit θ in the same way as q??
σ_θ = sqrt(θ′θ′)

# Enforce Cauchy-Schwarz inequality, numerically stable compute
_corr = (θ′q′ / max(σ_q, eps_q))
corr = max(min(_corr / max(σ_θ, eps_θ), FT(1)), FT(-1))

# Conditionals
σ_c = sqrt(max(1 - corr * corr, 0)) * σ_θ

μ_c = θ_mean + sqrt(FT(2)) * corr * σ_θ * χ1
θ_hat = μ_c + sqrt(FT(2)) * σ_c * χ2
q_hat = q_mean + sqrt(FT(2)) * σ_q * χ1
# The σ_q_lim limits q_tot_hat to be close to zero
# for the negative sampling points. However due to numerical erros
# we sometimes still get small negative numers here
return (θ_hat, max(FT(0), q_hat))
end

function f(x1_hat, x2_hat)
FT = eltype(x1_hat)
@assert(x1_hat >= FT(0))
@assert(x2_hat >= FT(0))
ts = thermo_state(thermo_params; p = p_c, θ = x1_hat, q_tot = x2_hat)
hc = TD.has_condensate(thermo_params, ts)
return (;
cf = hc ? FT(1) : FT(0), # cloud fraction
q_tot_sat = hc ? x2_hat : FT(0), # cloudy/dry for buoyancy in TKE
)
end

return quad(f, get_x_hat, SG_quad).cf
end

"""
Compute f(θ, q) as a sum over inner and outer quadrature points
that approximate the sub-grid scale variability of θ and q.
θ - liquid ice potential temperature
q - total water specific humidity
"""
function quad(f::F, get_x_hat::F1, quad) where {F <: Function, F1 <: Function}
χ = quad.a
weights = quad.w
quad_order = quadrature_order(quad)
FT = eltype(χ)
# zero outer quadrature points
T = typeof(f(get_x_hat(χ[1], χ[1])...))
outer_env = rzero(T)
@inbounds for m_q in 1:quad_order
# zero inner quadrature points
inner_env = rzero(T)
for m_h in 1:quad_order
x_hat = get_x_hat(χ[m_q], χ[m_h])
inner_env = inner_env f(x_hat...) weights[m_h] FT(1 / sqrt(π))
end
outer_env = outer_env inner_env weights[m_q] FT(1 / sqrt(π))
end
return outer_env
end
4 changes: 3 additions & 1 deletion src/cache/diagnostic_edmf_precomputed_quantities.jl
Original file line number Diff line number Diff line change
Expand Up @@ -449,7 +449,7 @@ function set_diagnostic_edmf_precomputed_quantities_do_integral!(Y, p, t)
nh_pressure³ʲ_data_prev_halflevel
)

# get u³ʲ to calculate divergence term for detrainment,
# get u³ʲ to calculate divergence term for detrainment,
# u³ʲ will be clipped later after we get area fraction
minimum_value = FT(1e-6)
@. u³ʲ_halflevel = ifelse(
Expand Down Expand Up @@ -717,6 +717,8 @@ function set_diagnostic_edmf_precomputed_quantities_env_closures!(Y, p, t)
TD.air_temperature(thermo_params, ᶜts), # t_sat
TD.vapor_specific_humidity(thermo_params, ᶜts), # qv_sat
q_tot, # qt_sat
TD.liquid_specific_humidity(thermo_params, ᶜts),
TD.ice_specific_humidity(thermo_params, ᶜts),
TD.dry_pottemp(thermo_params, ᶜts), # θ_sat
TD.liquid_ice_pottemp(thermo_params, ᶜts), # θ_liq_ice_sat
projected_vector_data(
Expand Down
5 changes: 5 additions & 0 deletions src/cache/precomputed_quantities.jl
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@ function precomputed_quantities(Y, atmos)
ᶜh_tot = similar(Y.c, FT),
sfc_conditions = Fields.Field(SCT, Spaces.level(axes(Y.f), half)),
)
cloud_diagnostics = (; ᶜcloud_fraction = similar(Y.c, FT),)
advective_sgs_quantities =
atmos.turbconv_model isa PrognosticEDMFX ?
(;
Expand Down Expand Up @@ -124,6 +125,7 @@ function precomputed_quantities(Y, atmos)
diagnostic_sgs_quantities...,
vert_diff_quantities...,
precipitation_quantities...,
cloud_diagnostics...,
)
end

Expand Down Expand Up @@ -374,6 +376,9 @@ NVTX.@annotate function set_precomputed_quantities!(Y, p, t)
set_precipitation_precomputed_quantities!(Y, p, t)
end

# TODO
#set_cloud_fraction!(Y, p, moisture_model)

return nothing
end

Expand Down
2 changes: 2 additions & 0 deletions src/cache/prognostic_edmf_precomputed_quantities.jl
Original file line number Diff line number Diff line change
Expand Up @@ -240,6 +240,8 @@ function set_prognostic_edmf_precomputed_quantities_closures!(Y, p, t)
TD.air_temperature(thermo_params, ᶜts⁰), # t_sat
TD.vapor_specific_humidity(thermo_params, ᶜts⁰), # qv_sat
ᶜq_tot⁰, # qt_sat
TD.liquid_specific_humidity(thermo_params, ᶜts⁰),
TD.ice_specific_humidity(thermo_params, ᶜts⁰),
TD.dry_pottemp(thermo_params, ᶜts⁰), # θ_sat
TD.liquid_ice_pottemp(thermo_params, ᶜts⁰), # θ_liq_ice_sat
projected_vector_data(
Expand Down
Loading

0 comments on commit 8d894d1

Please sign in to comment.