This is the official PyTorch implementation of FSM (Fourier Style Mining) (MIA 2022).
Source Free Domain Adaptation for Medical Image Segmentation with Fourier Style Mining[Paper]
Chen Yang, Xiaoqing Guo, Zhen Chen, Yixuan Yuan
Install dependencies
pip install -r requirements.txt
(1) Download the EndoScene and ETIS-Larib dataset.
(2) Put the data in the corresponding folders. The dataset files are organized as follows.
SFDA-FSM
├── data
│ ├── EndoScene
│ │ ├── images
│ │ │ ├── [case_id].png
│ │ ├── labels
│ │ │ ├── [case_id].png
│ ├── ETIS-Larib
│ │ ├── images
│ │ │ ├── [case_id].png
│ │ ├── labels
│ │ │ ├── [case_id].png
(3) Split dataset into training set and test set as follows.
python preprocess.py
(1) Generate source-like images with pretrained source model as follows.
python tools/domain_inversion.py
(2) Visualization of source-like images.
python tools/train_adapt.py
python tools/test.py
If you find this project useful, please consider citing:
@article{yang2022source,
title={Source free domain adaptation for medical image segmentation with fourier style mining},
author={Yang, Chen and Guo, Xiaoqing and Chen, Zhen and Yuan, Yixuan},
journal={Medical Image Analysis},
volume={79},
pages={102457},
year={2022},
publisher={Elsevier}
}