I'm running with docker nvcr.io/nvidia/tritonserver:22.12
- Python 3.8
- Torch 1.13.1
- ONNX 1.14.0
- Tensorrt 8.5.1.7
- Open file
torch2onnx.py
and update attribute values to suit your model - Run:
CUDA_VISIBLE_DEVICES=1 python torch2onnx.py --weights weights/<your_model_name>.pt --output weights/<your_output_model_name>.onnx
- Open file
add_nms_plugins.py
and update attribute values to suit your model - Run:
python3 add_nms_plugins.py --model weights/<your_output_model_name>.onnx
- Run:
/usr/src/tensorrt/bin/trtexec --onnx=weights/<your_output_model_name>-nms.onnx \
--saveEngine=weights/<your_output_trt_model_name>.trt \
--explicitBatch \
--minShapes=input:1x3x416x416 \
--optShapes=input:1x3x896x896 \
--maxShapes=input:1x3x896x896 \
--verbose \
--device=1
- Open file
infer_trt.py
and modify attribute values - Run:
python3 infer_trt.py