Skip to content

Code for AAAI 2023 paper 'Learning to Memorize Entailment and Discourse Relations for Persona-Consistent Dialogues'

Notifications You must be signed in to change notification settings

Chenrj233/LMEDR

Repository files navigation

LMEDR

Code for AAAI 2023 paper: Learning to Memorize Entailment and Discourse Relations for Persona-Consistent Dialogues.

Requirements

Check the package requirements

  • python==3.8
  • torch==1.9.1
  • transformers==4.14.1
  • pytorch-ignite==0.4.9

Please install ParlAI, which can be done in the following ways

git clone https://github.com/Chenrj233/ParlAI.git
cd ParlAI
python setup.py install

Please replace eval_f1.py and eval_hits.py in /ParlAI/projects/convai2/ with the corresponding files in /other/. Similarly, replace the generation_utils.py in transformers/ with the corresponding files in /other/, the file is in a path similar to

| -- python3.8
	| -- site-packages
		| -- transformers
			| -- modeling_utils.py
			| -- generation_utils.py
			| -- ...

Data

The datasets used in the paper can be obtained from the following link:

Dataset Paper
ConvAI2 PersonaChat The Second Conversational Intelligence Challenge (ConvAI2)
DSTC7-AVSD Audio Visual Scene-aware dialog (AVSD) Track for Natural Language Generation in DSTC7
MNLI A broad-coverage challenge corpus for sentence understanding through inference
DNLI Dialogue Natural Language Inference

Training

  • PersonaChat

    Use the following script to train on the PersonaChat original dataset. If you want to train on the revised dataset, please add --revised

python train_PersonaChat.py --lr 8e-6 \
--epochs 20 \
--train_batch_size 2 \
--valid_batch_size 2 \
--infer_batch_size 64 
  • DSTC7-AVSD

    For training on DSTC7-AVSD, it can be run as

python train_dstc.py --lr 8e-6 \
--epochs 20 \
--train_batch_size 2 \
--valid_batch_size 2 \
--infer_batch_size 10

Evaluation

  • Hits@1
python evaluation_PersonaChat.py --model_checkpoint persona_original \
--eval_type hits@1
  • F1
python evaluation_PersonaChat.py --model_checkpoint persona_original \
--eval_type f1 \
--beam 2 \
--max_history 7
  • PPL
python train_PersonaChat.py --load_from persona_original \
--eval
  • C.Score

    Please refer to PAML.

  • DSTC7-AVSD

    First, we use dstc_generate.py to generate the predicted response, and then use dstc7avsd_eval to evaluate,model checkpoint can be obtained from dstc_model.

python dstc_generate.py --load_from dstc_model \
--beam 5

Results

We also provide the final generated texts, which can be found in /results/.

About

Code for AAAI 2023 paper 'Learning to Memorize Entailment and Discourse Relations for Persona-Consistent Dialogues'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages