This repository has been archived by the owner on Jan 7, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
05e3fad
commit b96f67a
Showing
1 changed file
with
88 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
## 2023/10/25 | ||
|
||
### 1. Rigid body rotation with constant angular velocity $\vec \omega_0$ 以恒角速度$\vec \omega_0$转动的刚体 | ||
|
||
$$\overrightarrow \nabla \times \left( \vec \omega_0 \times \vec r\right) = 2 \omega_0$$ | ||
|
||
### 2. Field theory 场论 | ||
|
||
$$\vec r = x \hat i + y \hat j + z \hat k$$ | ||
|
||
$$r = \sqrt{x^2 + y^2 + z^2}$$ | ||
|
||
Common conclusions in field theory: | ||
|
||
- $\overrightarrow \nabla \cdot \vec r = 3$ | ||
- $\overrightarrow \nabla \times \vec r = \vec 0$ | ||
- $\overrightarrow \nabla r = \hat{\vec r}$ | ||
- $\nabla^2 r = \dfrac{2}{r}$ | ||
- $\overrightarrow \nabla \vec r = \mathbf I$ | ||
|
||
### 3. From Navier-Stokes equations to Bernoulli's principle (伯努利原理) | ||
|
||
The material derivative (物质导数) of $\vec v$ is shown as follows: | ||
|
||
$$\vec a = {\mathrm D \vec v \over \mathrm Dt} \equiv \underbrace{\partial \vec v \over \partial t}_\text{Local/Euler acceleration} + \underset{\text{平流加速度 (非线性)}}{\underbrace{\left(\vec v \cdot \overrightarrow \nabla \right) \vec v}_\text{advective acceleration}}$$ | ||
|
||
Euler, 1750: infinitesimal 无穷小量 | ||
|
||
Why does this form occur? | ||
|
||
Suppose we have a macroscopic tensor field (宏观张量场) $T$ with the sense that it depends only on position and time coordinates: | ||
|
||
$$T(t, \vec r(t))$$ | ||
|
||
$${\mathrm dT \over \mathrm dt} = {\partial T \over \partial t} + {\partial T \over \partial \vec r} {\mathrm d \vec r \over \mathrm dt} = {\partial T \over \partial t} + \vec v {\partial T \over \partial \vec r} = \left({\partial \over \partial t} + \vec v \cdot {\partial \over \partial \vec r} \right) T = \left({\partial \over \partial t} + \vec v \cdot \overrightarrow \nabla \right) T.$$ | ||
|
||
Using this we can get: If $\vec v = \vec v(\vec r(t), t)$, then $$\vec a = {\partial \vec v \over \partial t} + (\vec v \cdot \overrightarrow \nabla) \vec v.$$ | ||
|
||
From the Navier-Stokes equations we can get: | ||
|
||
$$\vec a = - {1 \over \rho} \overrightarrow \nabla p + \nu \nabla^2 \vec v + \vec g,$$ | ||
|
||
which become the Euler equations (fluid dynamics) when $\nu = 0.$ | ||
|
||
By using lamb vector $$\left(\overrightarrow \nabla \times \vec v \right) \times \vec v = (\vec v \cdot \overrightarrow \nabla) \vec v - \overrightarrow \nabla \left( {1 \over 2} v^2 \right),$$ | ||
|
||
we can get | ||
|
||
$${\partial \vec v \over \partial t} + \left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left( {1 \over 2} v^2 \right) = -{1 \over \rho} \overrightarrow \nabla p + \mu \nabla^2 \vec v + \vec g.$$ | ||
|
||
Under the following conditions: | ||
|
||
- The fluid flows in steady state (定常流动): $\dfrac{\partial \vec v}{\partial t} = 0$ | ||
- Inviscid fluid (无黏液体): $\nu = 0$ | ||
- Under conservative force field $\vec g = - \overrightarrow \nabla (gh)$ | ||
- The fluid is incompressible (液体不可压缩) | ||
|
||
We can get: | ||
|
||
$$\left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left( {1 \over 2} v^2 \right) = - \overrightarrow \nabla \left({p \over \rho} \right) - \overrightarrow \nabla (gh)$$ | ||
|
||
$$\left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left({p \over \rho} + {1 \over 2} v^2 + gh \right) = \vec 0$$ | ||
|
||
$${\vec v \over |\vec v|} \cdot \left[ \left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left({p \over \rho} + {1 \over 2} v^2 + gh \right) \right] = 0$$ | ||
|
||
$${\vec v \over |\vec v|} \cdot \left[ \left(\overrightarrow \nabla \times \vec v \right) \times \vec v \right] + {\vec v \over |\vec v|} \cdot \overrightarrow \nabla \left({p \over \rho} + {1 \over 2} v^2 + gh \right) = 0$$ | ||
|
||
Clearly, | ||
|
||
$${\vec v \over |\vec v|} \cdot \left[ \left(\overrightarrow \nabla \times \vec v \right) \times \vec v \right] = 0,$$ | ||
|
||
because $\left(\overrightarrow \nabla \times \vec v \right) \perp \vec v.$ | ||
|
||
$\displaystyle {\vec v \over |\vec v|} \cdot \overrightarrow \nabla$ is a directional derivative (方向导数). | ||
|
||
Integral along the streamline (沿流线积分), and we obtain | ||
|
||
$${p \over \rho} + {1 \over 2} v^2 + gh = \text{const},$$ | ||
|
||
which is called the **Bernoulli's principle (伯努利原理)**. | ||
|
||
Its other forms include: | ||
|
||
| Form | Name | | ||
| :-- | :-- | | ||
| $${p \over \rho} + {1 \over 2} v^2 + gh = \text{const}$$ | Energy form (per unit mass) | | ||
| $$p + {1 \over 2} \rho v^2 + \rho g h = \text{const}$$ | Pressure form | | ||
| $${p \over \rho g} + {v^2 \over 2g} + h = \text{const}$$ | Head form (used in Hydraulic engineering 水利形式) | |