Skip to content
This repository has been archived by the owner on Jan 7, 2024. It is now read-only.

Commit

Permalink
complete 2023/10/25 notes
Browse files Browse the repository at this point in the history
  • Loading branch information
Chen-Yuanmeng committed Oct 28, 2023
1 parent 05e3fad commit b96f67a
Showing 1 changed file with 88 additions and 0 deletions.
88 changes: 88 additions & 0 deletions src/20231025.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
## 2023/10/25

### 1. Rigid body rotation with constant angular velocity $\vec \omega_0$ 以恒角速度$\vec \omega_0$转动的刚体

$$\overrightarrow \nabla \times \left( \vec \omega_0 \times \vec r\right) = 2 \omega_0$$

### 2. Field theory 场论

$$\vec r = x \hat i + y \hat j + z \hat k$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

Common conclusions in field theory:

- $\overrightarrow \nabla \cdot \vec r = 3$
- $\overrightarrow \nabla \times \vec r = \vec 0$
- $\overrightarrow \nabla r = \hat{\vec r}$
- $\nabla^2 r = \dfrac{2}{r}$
- $\overrightarrow \nabla \vec r = \mathbf I$

### 3. From Navier-Stokes equations to Bernoulli's principle (伯努利原理)

The material derivative (物质导数) of $\vec v$ is shown as follows:

$$\vec a = {\mathrm D \vec v \over \mathrm Dt} \equiv \underbrace{\partial \vec v \over \partial t}_\text{Local/Euler acceleration} + \underset{\text{平流加速度 (非线性)}}{\underbrace{\left(\vec v \cdot \overrightarrow \nabla \right) \vec v}_\text{advective acceleration}}$$

Euler, 1750: infinitesimal 无穷小量

Why does this form occur?

Suppose we have a macroscopic tensor field (宏观张量场) $T$ with the sense that it depends only on position and time coordinates:

$$T(t, \vec r(t))$$

$${\mathrm dT \over \mathrm dt} = {\partial T \over \partial t} + {\partial T \over \partial \vec r} {\mathrm d \vec r \over \mathrm dt} = {\partial T \over \partial t} + \vec v {\partial T \over \partial \vec r} = \left({\partial \over \partial t} + \vec v \cdot {\partial \over \partial \vec r} \right) T = \left({\partial \over \partial t} + \vec v \cdot \overrightarrow \nabla \right) T.$$

Using this we can get: If $\vec v = \vec v(\vec r(t), t)$, then $$\vec a = {\partial \vec v \over \partial t} + (\vec v \cdot \overrightarrow \nabla) \vec v.$$

From the Navier-Stokes equations we can get:

$$\vec a = - {1 \over \rho} \overrightarrow \nabla p + \nu \nabla^2 \vec v + \vec g,$$

which become the Euler equations (fluid dynamics) when $\nu = 0.$

By using lamb vector $$\left(\overrightarrow \nabla \times \vec v \right) \times \vec v = (\vec v \cdot \overrightarrow \nabla) \vec v - \overrightarrow \nabla \left( {1 \over 2} v^2 \right),$$

we can get

$${\partial \vec v \over \partial t} + \left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left( {1 \over 2} v^2 \right) = -{1 \over \rho} \overrightarrow \nabla p + \mu \nabla^2 \vec v + \vec g.$$

Under the following conditions:

- The fluid flows in steady state (定常流动): $\dfrac{\partial \vec v}{\partial t} = 0$
- Inviscid fluid (无黏液体): $\nu = 0$
- Under conservative force field $\vec g = - \overrightarrow \nabla (gh)$
- The fluid is incompressible (液体不可压缩)

We can get:

$$\left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left( {1 \over 2} v^2 \right) = - \overrightarrow \nabla \left({p \over \rho} \right) - \overrightarrow \nabla (gh)$$

$$\left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left({p \over \rho} + {1 \over 2} v^2 + gh \right) = \vec 0$$

$${\vec v \over |\vec v|} \cdot \left[ \left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left({p \over \rho} + {1 \over 2} v^2 + gh \right) \right] = 0$$

$${\vec v \over |\vec v|} \cdot \left[ \left(\overrightarrow \nabla \times \vec v \right) \times \vec v \right] + {\vec v \over |\vec v|} \cdot \overrightarrow \nabla \left({p \over \rho} + {1 \over 2} v^2 + gh \right) = 0$$

Clearly,

$${\vec v \over |\vec v|} \cdot \left[ \left(\overrightarrow \nabla \times \vec v \right) \times \vec v \right] = 0,$$

because $\left(\overrightarrow \nabla \times \vec v \right) \perp \vec v.$

$\displaystyle {\vec v \over |\vec v|} \cdot \overrightarrow \nabla$ is a directional derivative (方向导数).

Integral along the streamline (沿流线积分), and we obtain

$${p \over \rho} + {1 \over 2} v^2 + gh = \text{const},$$

which is called the **Bernoulli's principle (伯努利原理)**.

Its other forms include:

| Form | Name |
| :-- | :-- |
| $${p \over \rho} + {1 \over 2} v^2 + gh = \text{const}$$ | Energy form (per unit mass) |
| $$p + {1 \over 2} \rho v^2 + \rho g h = \text{const}$$ | Pressure form |
| $${p \over \rho g} + {v^2 \over 2g} + h = \text{const}$$ | Head form (used in Hydraulic engineering 水利形式) |

0 comments on commit b96f67a

Please sign in to comment.