This repository has been archived by the owner on Jan 7, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ce68295
commit b7fc23a
Showing
1 changed file
with
191 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
## 2023/10/11 | ||
|
||
### 1. Phase an group velocity 相速度和群速度 | ||
|
||
Phase velocity (相速度) $v_p$ is the velocity of a certain phase that travels: | ||
|
||
$$v_p = {\omega \over k}$$ | ||
|
||
Group velocity (群速度) $v_g$ is the velocity with which the envelope of the wave (波包) propagates through space. | ||
|
||
$$v_g = {\Delta \omega \over \Delta k}$$ | ||
|
||
Energy is transmitted through *group velocity*, not | ||
|
||
You can refer to this below: | ||
|
||
> ![Demo of a wave group](../assets/Wave_group.gif) | ||
> | ||
> The <span style="color: #DD0000">■</span> red square moves with the phase velocity, and the <span style="color: #77AC30">●</span> green circles propagate with the group velocity. (Source: Wikipedia) | ||
> | ||
> For more reference, you can see: [https://www.zhihu.com/question/29444240/answer/1833520606](https://www.zhihu.com/question/29444240/answer/1833520606). | ||
### 2. Order of magnitude 数量级 | ||
|
||
For a number $N$, we usually define its *order of magnitude* as follows: | ||
|
||
Write the number in the form $$N =a \times 10 ^ b,$$ in which $$\dfrac{1}{\sqrt{10}} \leq a \leq \sqrt{10}, \ b \in \Bbb{Q},$$ and $b$ is the *order of magnitude* of the number. | ||
|
||
Of course this definition is not absolute, and some people tend to use $0.5 \leq a \leq 5$ or other criteria. | ||
|
||
For example: | ||
|
||
| $N$ | Expression in $N =a \times 10^b$ | Order of magnitude $b$ | | ||
|-|-|-| | ||
| 0.2 | 2 × 10<sup>−1</sup> |−1 | | ||
| 1 | 1 × 10<sup>0</sup> |0 | | ||
| 5 | 0.5 × 10<sup>1</sup> |1| | ||
| 6 | 0.6 × 10<sup>1</sup> |1| | ||
| 31 | 3.1 × 10<sup>1</sup> | 1| | ||
| 32 | 0.32 × 10<sup>2</sup> | 2| | ||
| 999 | 0.999 × 10<sup>3</sup>| 3| | ||
| 1000 | 1 × 10<sup>3</sup>| 3 | | ||
|
||
Some constants in physics: | ||
|
||
- Avogadro constant $N_A = 6.02 \times 10^{23} \ \mathrm{mol^{-1}}$ | ||
- Reduced Planck constant $\hbar = 1.054 \times 10^{-34} \ \mathrm{J \cdot s}$ | ||
- Speed of light $c = 2.99792 \times 10^{8} \ \mathrm{m/s}$ | ||
- Boltzmann constant $k_\mathrm{B} = 1.38 \times 10^{-23} \ \mathrm{J/K}$ | ||
- Fundamental charge $e = 1.602 \times 10^{-19} \ \mathrm{C}$ | ||
- Universal gravitational constant $G = 6.672 \times 10^{-11} \ \mathrm{N \cdot m^2/kg^2}$ | ||
|
||
|
||
### 3. A particular model 某个模型 | ||
|
||
Below is a container with two sides connected to each other by a "small hole". | ||
|
||
<img alt="A container with two sides" src="../assets/Model_Two_sides.png" height=240> | ||
|
||
To get the two sides to balance, we need to have | ||
|
||
$$ | ||
\left\{ | ||
\begin{align*} | ||
& p_1 = p_2 \ \ \ &\text{pressure} &\\[1ex] | ||
& T_1 = T_2 \ \ \ &\text{temperature} &\\[1ex] | ||
& \mu_1 = \mu_2 \ \ \ &\text{chemical potential (化学势)} & | ||
\end{align*} | ||
\right. | ||
$$ | ||
|
||
Chemical potential $\mu$ is defined as follows: | ||
|
||
In a chemical system where there are $n$ kinds of species (物种), define **Gibbs free energy** (吉布斯自由能) $$G=U-TS+pV$$ and the **chemical potential** (化学势) of species $i$ $$\mu_i = \left({\partial G \over \partial n_i}\right)_{T, p, n_j (j \neq i)}.$$ | ||
|
||
### 4. Something about dimensional analysis and unit systems 一些关于量纲分析和单位制的东西 | ||
|
||
Maxwell points out that: | ||
|
||
1. For a mechanical quantity (力学量), we only meed three dimensions $\mathrm{M, L, T}$ to form its unit and | ||
|
||
2. Sometimes the dimensions of combined quantities are more useful. | ||
|
||
There are two commonly-used unit systems in the world: | ||
- *Système International* (SI) 国际单位制 | ||
- Centimetre–gram–second system of units (CGS) 厘米—克—秒制 | ||
|
||
Let's look at a few examples. | ||
|
||
#### (1) Coulomb's law 库仑定律 | ||
|
||
$$F = \left\{ | ||
\begin {align*} | ||
& \dfrac{q_1q_2}{4 \pi \varepsilon_0 r^2} & \text{(SI)} \\[3ex] | ||
& \dfrac{q_1q_2}{r^2} & \text{(CGS)} | ||
\end {align*} | ||
\right. | ||
$$ | ||
|
||
|
||
|
||
#### (2) Fine structure constant 精细结构常数 | ||
|
||
$$\alpha = \left\{ | ||
\begin {align*} | ||
& \dfrac{e^2}{4 \pi \varepsilon_0 \hbar c} & \text{(SI)} \\[3ex] | ||
& \dfrac{e^2}{\hbar c} & \text{(CGS)} | ||
\end {align*} | ||
\right. | ||
\approx {1 \over 137} | ||
$$ | ||
|
||
*W. Pauli died in Room No. 137 in hospital. (地狱笑话了属于是)* | ||
|
||
#### (3) Bohr radius 玻尔半径 | ||
|
||
$$r_B = \left\{ | ||
\begin {align*} | ||
& \dfrac{4 \pi \varepsilon_0 \hbar^2}{m_ee^2} & \text{(SI)} \\[3ex] | ||
& \dfrac{\hbar^2}{m_ee^2} & \text{(CGS)} | ||
\end {align*} | ||
\right. | ||
$$ | ||
|
||
### 5. Planck units 普朗克单位 | ||
|
||
Planck units are a set of units that, by definition, are expressed using these universal constants below, which, have the numeric value $1$ when expressed: | ||
|
||
- the speed of light in vacuum $c$ | ||
- the gravitational constant $G$ | ||
- the reduced Planck constant $\hbar$ | ||
- the Boltzmann constant $k_\mathrm{B}$ | ||
|
||
Typically we would use dimensional analysis to derive these units. | ||
|
||
$$[c] = \mathrm{LT^{-1}}$$ | ||
|
||
$$[G] = {[F][r^2] \over [m_1m_2]} = \mathrm{\dfrac{ML}{T^2} \cdot L^2 \over M^2} = \mathrm{M^{-1}L^3T^{-2}}$$ | ||
|
||
$$[\hbar] = [E][t] = [mc^2][t] = \mathrm{ML^2T^{-1}}$$ | ||
|
||
$$[k_\mathrm{B}] = {[E] \over [T]} = {[mc^2] \over [T]} = \mathrm{ML^2T^{-2}\Theta^{-1}}$$ | ||
|
||
#### (1) Planck length 普朗克长度 | ||
|
||
$$\left[{G \hbar \over c^3}\right] = \mathrm{M^{-1}L^3T^{-2} \cdot ML^2T^{-1} \over (LT^{-1})^3} = \mathrm{L^2}$$ | ||
|
||
$$l_P = \sqrt{G \hbar \over c^3}$$ | ||
|
||
#### (2) Planck time 普朗克时间 | ||
|
||
$$t_P = {l_P \over c} = \sqrt{G \hbar \over c^5}$$ | ||
|
||
#### (3) Planck mass 普朗克质量 | ||
|
||
$$\left[{\hbar c \over G}\right] = \mathrm{ML^2T^{-1} \cdot LT^{-1} \over M^{-1}L^3T^{-2}} = \mathrm{M^2}$$ | ||
|
||
$$m_P = \sqrt{\hbar c\over G}$$ | ||
|
||
#### (4) Planck temperature 普朗克温度 | ||
|
||
$$\left[{\hbar c^5 \over Gk_\mathrm{B}^2}\right] = \mathrm{ML^2T^{-1} \cdot (LT^{-1})^5 \over M^{-1}L^3T^{-2} \cdot (ML^2T^{-2}\Theta^{-1})^2} = \mathrm{\Theta^2}$$ | ||
|
||
$$T_P = \sqrt{\hbar c^5 \over Gk_\mathrm{B}^2}$$ | ||
|
||
#### (5) Planck energy 普朗克能量 | ||
|
||
$$E_P = m_Pc^2 = \sqrt{\hbar c^5\over G}$$ | ||
|
||
#### (6) Planck momentum 普朗克动量 | ||
|
||
$$p_P = m_Pc = \sqrt{\hbar c^3\over G}$$ | ||
|
||
#### (7) Planck acceleration 普朗克加速度 | ||
|
||
$$a_P = {c \over t_P} = \sqrt{c^7 \over \hbar G}$$ | ||
|
||
#### (8) Planck force 普朗克力 | ||
|
||
$$F_P = m_P a_P = {c^4 \over G}$$ | ||
|
||
Note that the Planck force can be *hidden* in the Einstein gravitational field equations: | ||
|
||
$$R_{\mu\nu} - {1 \over 2}g_{\mu\nu}R = 8 \pi \red{G \over c^4}T_{\mu\nu} = {8 \pi \over \red{F_P}} T_{\mu\nu}$$ | ||
|
||
*隐藏在引力方程中的力,被称为引力很合理吧?这恒河里!doge* | ||
|
||
#### (9) Planck density 普朗克密度 | ||
|
||
$$\rho_P = {m_P \over {l_P}^3} = {c^5 \over \hbar G^2}$$ | ||
|