-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
87 lines (82 loc) · 3.95 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import paddle
import paddle.nn as nn
class Color_model(nn.Layer):
def __init__(self):
super(Color_model, self).__init__()
self.features = nn.Sequential(
# conv1
nn.Conv2D(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2D(in_channels=64, out_channels=64, kernel_size=3, stride=2, padding=1), # (H/2, W/2)
nn.ReLU(),
nn.BatchNorm2D(num_features=64),
# conv2
nn.Conv2D(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2D(in_channels=128, out_channels=128, kernel_size=3, stride=2, padding=1), # (H/4,W/4)
nn.ReLU(),
nn.BatchNorm2D(num_features=128),
# conv3
nn.Conv2D(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2D(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2D(in_channels=256, out_channels=256, kernel_size=3, stride=2, padding=1), # (H/8,W/8)
nn.ReLU(),
nn.BatchNorm2D(num_features=256),
# conv4
nn.Conv2D(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), # (H/8,H/8)
nn.ReLU(),
nn.BatchNorm2D(num_features=512),
# conv5
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=2, dilation=2),
nn.ReLU(),
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=2, dilation=2),
# (H/8,W/8)
nn.ReLU(),
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=2, dilation=2),
# ks=3, stride=1, pad = 2, dilation=2的扩张卷积不改变特征图尺寸
nn.ReLU(),
nn.BatchNorm2D(num_features=512),
# conv6
nn.ReLU(),
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=2, dilation=2),
nn.ReLU(),
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=2, dilation=2),
nn.ReLU(),
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=2, dilation=2),
# (H/8,W/8)
nn.ReLU(),
nn.BatchNorm2D(num_features=512),
# conv7
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1, dilation=1),
nn.ReLU(),
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1, dilation=1),
nn.ReLU(),
nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1, dilation=1),
nn.ReLU(),
nn.BatchNorm2D(num_features=512),
# conv8
nn.Conv2DTranspose(in_channels=512, out_channels=256, kernel_size=4, stride=2, padding=1, dilation=1),
nn.ReLU(),
nn.Conv2D(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, dilation=1),
nn.ReLU(),
nn.Conv2D(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, dilation=1),
# (H/4,W/4)
nn.ReLU(),
# conv8_313
nn.Conv2D(in_channels=256, out_channels=313, kernel_size=1, stride=1, dilation=1),
# (H/4, W/4, 313)
)
def forward(self, gray_image):
features = self.features(gray_image)
return features
if __name__ == '__main__':
img = paddle.rand([1, 1, 256, 256])
model = Color_model()
feature = model(img)
print(feature.shape) # [1, 313, 64, 64]