-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathannulus_geometry2022.py
230 lines (190 loc) · 9.14 KB
/
annulus_geometry2022.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import matplotlib.pyplot as plt
import sys
# GitLab CUQI
sys.path.append('../cuqipy/')
import cuqi
class Annulus(cuqi.geometry.Geometry):
def __init__(self, norings=1, imagesize=1, pixeldim = 1000, c_coords = 'polar', annulus_geom_type = "Free_annuli"):
self.norings = norings
self.imagesize = imagesize
self.pixeldim = pixeldim
self.c_coords = c_coords # remember a check
self.annulus_geom_type = annulus_geom_type
# Image meshgrid
c = np.linspace(-self.imagesize/2, self.imagesize/2, self.pixeldim, endpoint=True)
[self.xx, self.yy] = np.meshgrid(c,c)
@property
def shape(self): #Shape of parameter space
return (self.norings*5,)
def annulus(self, centerpos1, centerpos2, innerradius, width, abscoeff):
if self.c_coords == 'polar':
centerpos_angle_rad = centerpos2
cx = np.cos(centerpos_angle_rad)*centerpos1
cy = np.sin(centerpos_angle_rad)*centerpos1
elif self.c_coords == 'cartesian':
cx = centerpos1
cy = centerpos2
else:
print("Please select c_coords to be 'polar' or 'cartesian'.")
r1 = (self.xx-cx)**2 + (self.yy-cy)**2
image = (r1 <= (innerradius + width)**2) & (r1 > innerradius**2)
return image*abscoeff
def _plot(self, funvals, **kwargs):
kwargs.setdefault('cmap', kwargs.get('cmap', "gray"))
return plt.imshow(funvals, **kwargs)
def setup_prior(self,annulus_params_list, geometry, name = None):
idx = len(annulus_params_list) * [0]
dim = len(annulus_params_list)
for i in range(len(annulus_params_list)):
anno = annulus_params_list[i].annulusno
if annulus_params_list[i].paramtype == "center_x":
paramno = 0
elif annulus_params_list[i].paramtype == "center_y":
paramno = 1
elif annulus_params_list[i].paramtype == "inner_r":
paramno = 2
elif annulus_params_list[i].paramtype == "width":
paramno = 3
elif annulus_params_list[i].paramtype == "abscoeff":
paramno = 4
if self.annulus_geom_type == "Free_annuli":
idx[i] = anno*5 + paramno
elif self.annulus_geom_type == "ConcentricConnnected_annuli":
if paramno < 3:
idx[i] = paramno
elif paramno == 3:
idx[i] = 3 + anno
elif paramno == 4:
idx[i] = 3 + self.norings + anno
# Sum of prior logpdfs
def _prior_logpdf(*args):
out = 0
for i in range(len(annulus_params_list)):
out += annulus_params_list[i].prior.logpdf(args[0][idx[i]])
return out
def _prior_gradient(*args):
out = 0
return out
# sample priors
def _prior_sample(N=1):
s = np.zeros((dim,N))
for i in range(len(annulus_params_list)):
s[idx[i],:] = annulus_params_list[i].prior.sample(N)
return np.squeeze(s)
return cuqi.distribution.UserDefinedDistribution(dim=dim, logpdf_func=_prior_logpdf, sample_func = _prior_sample, gradient_func = _prior_gradient, geometry = geometry, name = name)
@property
def variables(self):
varnames = []
if self.annulus_geom_type == "Free_annuli":
for i in range(self.norings):
varnames.append("x{}".format(i))
for i in range(self.norings):
varnames.append("y{}".format(i))
for i in range(self.norings):
varnames.append("r{}".format(i))
elif self.annulus_geom_type == "ConcentricConnected_annuli":
varnames.append("x")
varnames.append("y")
varnames.append("r")
for i in range(self.norings):
varnames.append("w{}".format(i))
for i in range(self.norings):
varnames.append("mu{}".format(i))
self._variables = varnames
return self._variables
def annulusparams2paramvec(self,annulus_params_list):
if self.annulus_geom_type == "Free_annuli":
center_x = np.zeros(self.norings)
center_y = np.zeros(self.norings)
inner_r = np.zeros(self.norings)
width = np.zeros(self.norings)
abscoeff = np.zeros(self.norings)
for i in range(self.norings*5):
exec("%s[%d] = %f" % (annulus_params_list[i].paramtype,annulus_params_list[i].annulusno,annulus_params_list[i].value))
elif self.annulus_geom_type == "ConcentricConnected_annuli":
center_x = np.zeros(1)
center_y = np.zeros(1)
inner_r = np.zeros(1)
width = np.zeros(self.norings)
abscoeff = np.zeros(self.norings)
for i in range(3+self.norings*2):
exec("%s[%d] = %f" % (annulus_params_list[i].paramtype,annulus_params_list[i].annulusno,annulus_params_list[i].value))
out = np.hstack((center_x, center_y, inner_r, width, abscoeff))
return out
def cuqiparams2annulusparams(self,cuqi_params_vec):
annulusparams = []
if self.annulus_geom_type == "Free_annuli":
for i in range(self.norings):
tmp = Annulus_Param("center_x", i, prior=None, value = cuqi_params_vec[i])
annulusparams.append(tmp)
for i in range(self.norings):
tmp = Annulus_Param("center_y", self.norings+i, prior=None, value = cuqi_params_vec[self.norings+i])
annulusparams.append(tmp)
for i in range(self.norings):
tmp = Annulus_Param("inner_r", 2*self.norings+i, prior=None, value = cuqi_params_vec[2*self.norings+i])
annulusparams.append(tmp)
for i in range(self.norings):
tmp = Annulus_Param("width", 3*self.norings+i, prior=None, value = cuqi_params_vec[3*self.norings+i])
annulusparams.append(tmp)
for i in range(self.norings):
tmp = Annulus_Param("abscoeff", 4*self.norings+i, prior=None, value = cuqi_params_vec[4*self.norings+i])
annulusparams.append(tmp)
if self.annulus_geom_type == "ConcentricConnected_annuli":
tmp = Annulus_Param("center_x", 0, prior=None, value = cuqi_params_vec[0])
annulusparams.append(tmp)
tmp = Annulus_Param("center_y", 1, prior=None, value = cuqi_params_vec[1])
annulusparams.append(tmp)
tmp = Annulus_Param("inner_r", 2, prior=None, value = cuqi_params_vec[2])
annulusparams.append(tmp)
for i in range(self.norings):
tmp = Annulus_Param("width", 3+i, prior=None, value = cuqi_params_vec[3+i])
annulusparams.append(tmp)
for i in range(self.norings):
tmp = Annulus_Param("abscoeff", 3+self.norings+i, prior=None, value = cuqi_params_vec[3+self.norings+i])
annulusparams.append(tmp)
return annulusparams
class Free_annuli(Annulus):
def __init__(self, norings, imagesize, pixeldim = 1000, c_coords = 'polar'):
super().__init__(norings, imagesize, pixeldim, c_coords, "Free_annuli")
@property
def shape(self): #Shape of parameter space
return (self.norings*5,)
def par2fun(self, params):
centerpos_lens = params[:self.norings]
centerpos_angles = params[self.norings:2*self.norings]
innerradii = params[2*self.norings:3*self.norings]
widths = params[3*self.norings:4*self.norings]
abscoeffs = params[4*self.norings:]
if self.norings == 1:
image = self.annulus(centerpos_lens, centerpos_angles, innerradii, widths, abscoeffs)
else:
image = np.zeros((self.pixeldim, self.pixeldim))
for i in range(self.norings):
image += self.annulus(centerpos_lens[i], centerpos_angles[i], innerradii[i], widths[i], abscoeffs[i])
return image
class ConcentricConnected_annuli(Annulus):
def __init__(self, norings, imagesize, pixeldim = 1000, c_coords = 'polar'):
super().__init__(norings, imagesize, pixeldim, c_coords, "ConcentricConnected_annuli")
@property
def shape(self): #Shape of parameter space
return (3+self.norings*2,)
def par2fun(self, params):
centerpos_lens = params[0]
centerpos_angles = params[1]
innerradii = params[2]
widths = params[3:3+self.norings]
abscoeffs = params[3+self.norings:]
if self.norings == 1:
image = self.annulus(centerpos_lens, centerpos_angles, innerradii, widths, abscoeffs)
else:
image = np.zeros((self.pixeldim, self.pixeldim))
for i in range(self.norings):
image += self.annulus(centerpos_lens, centerpos_angles, innerradii + np.sum(widths[0:i]), widths[i], abscoeffs[i])
return image
class Annulus_Param:
def __init__(self, paramtype, annulusno, prior = None, value = None):
self.paramtype = paramtype
self.annulusno = annulusno
self.prior = prior
self.value = value