forked from ModelCloud/GPTQModel
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Inference speed test (ModelCloud#1159)
* inference speed * code review * code review * add comment * code review * code review * code clean up * fix name * code updated
- Loading branch information
1 parent
73cd87f
commit 7aa59a0
Showing
3 changed files
with
190 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
# Copyright 2025 ModelCloud | ||
# Contact: [email protected], x.com/qubitium | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import time | ||
|
||
|
||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | ||
|
||
|
||
import unittest | ||
from transformers import AutoTokenizer | ||
|
||
from gptqmodel import GPTQModel | ||
from gptqmodel.utils.progress import ProgressBar | ||
|
||
|
||
class InferenceSpeed(unittest.TestCase): | ||
NATIVE_MODEL_ID = "/monster/data/model/DeepSeek-R1-Distill-Qwen-7B-gptqmodel-4bit-vortex-v2" | ||
BITBLAS_NATIVE_MODEL_ID = "/monster/data/model/opt-125M-autoround-lm_head-false-symTrue" | ||
MAX_NEW_TOEKNS = 10 | ||
NUM_RUNS = 20 | ||
PROMPTS = [ | ||
"I am in Paris and I", | ||
"The capital of the United Kingdom is", | ||
"The largest ocean on Earth is", | ||
"The world’s longest river is", | ||
"The tallest mountain in the world is", | ||
"The currency used in Japan is", | ||
"How to consult a dictionary?", | ||
"What is the boiling point of water in degrees Celsius?", | ||
"Which is the most widely used Internet search engine in the world?", | ||
"What is the official language of France?", | ||
] | ||
MAX_DELTA_FLOOR_PERCENT = 0.25 | ||
MAX_POSITIVE_DELTA_CEIL_PERCENT = 0.25 | ||
|
||
def inference(self, model_path, backend, tokens_per_second, assert_result=True): | ||
model = GPTQModel.from_quantized( | ||
model_path, | ||
backend=backend, | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(model_path) | ||
tokenizer.pad_token_id = tokenizer.eos_token_id | ||
inp = tokenizer(self.PROMPTS, padding=True, truncation=True, return_tensors="pt", padding_side='left').to( | ||
model.device) | ||
|
||
times = [] | ||
tokens = [] | ||
|
||
pb = ProgressBar(range(self.NUM_RUNS)) | ||
for i in pb: | ||
pb.set_description(f"run index {i} of {self.NUM_RUNS - 1}") | ||
start_time = time.time() | ||
result = model.generate(**inp, max_new_tokens=self.MAX_NEW_TOEKNS, pad_token_id=tokenizer.pad_token_id) | ||
end_time = time.time() | ||
elapsed_time = end_time - start_time | ||
times.append(elapsed_time) | ||
|
||
for j in range(result.shape[0]): | ||
new_tokens = result[j][inp['input_ids'].shape[1]:] | ||
new_token_count = len(new_tokens) | ||
tokens.append(new_token_count) | ||
|
||
sum_time = sum(times) | ||
sum_tokens = sum(tokens) | ||
|
||
avg_tokens_per_second = round(sum_tokens / sum_time, 2) | ||
|
||
print(f"\n**************** {backend} Result Info****************") | ||
print(f"Times: {times}") | ||
print(f"New Tokens: {tokens}") | ||
print(f"Sum Times: {sum_time}") | ||
print(f"Sum New Tokens: {sum_tokens}") | ||
print(f"New Token Per Second: {avg_tokens_per_second} token/s") | ||
print(f"**************** {backend} Result Info End****************") | ||
|
||
if not assert_result: | ||
return | ||
|
||
diff_pct = (avg_tokens_per_second / tokens_per_second) * 100 | ||
negative_pct = 100 * (1 - self.MAX_DELTA_FLOOR_PERCENT) | ||
positive_pct = 100 * (1 + self.MAX_POSITIVE_DELTA_CEIL_PERCENT) | ||
|
||
self.assertTrue(negative_pct <= diff_pct <= positive_pct, | ||
f"Tokens Per Second: {avg_tokens_per_second} diff {diff_pct:.2f}% is out of the expected range [{negative_pct}-{positive_pct}%]") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
# Copyright 2025 ModelCloud | ||
# Contact: [email protected], x.com/qubitium | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
from parameterized import parameterized | ||
|
||
from gptqmodel.utils import BACKEND | ||
from inference_speed import InferenceSpeed | ||
|
||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | ||
|
||
''' | ||
NATIVE_MODEL_ID = /monster/data/model/Llama-3.2-1B-Instruct-gptqmodel-4bit-vortext-v1 | ||
BITBLAS_NATIVE_MODEL_ID = /monster/data/model/opt-125M-autoround-lm_head-false-symTrue | ||
GPU: 4090 | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.MARLIN, 748), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.CUDA, 493), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.EXLLAMA_V1, 717), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.EXLLAMA_V2, 775), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.TRITON, 296), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.TORCH, 295), | ||
(InferenceSpeed.BITBLAS_NATIVE_MODEL_ID, BACKEND.BITBLAS, 1474), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.IPEX, 48), | ||
''' | ||
|
||
class TestInferenceSpeed(InferenceSpeed): | ||
|
||
@parameterized.expand( | ||
[ | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.MARLIN, 262), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.CUDA, 48), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.EXLLAMA_V1, 186), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.EXLLAMA_V2, 188), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.TRITON, 141), | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.TORCH, 48), | ||
(InferenceSpeed.BITBLAS_NATIVE_MODEL_ID, BACKEND.BITBLAS, 1474), # Second time running bitblas, there is cache | ||
] | ||
) | ||
def test_inference_speed(self, model_path, backend, tokens_per_second): | ||
# There are differences between the results of the first and second runs of bitblas | ||
# (there is a cache when running bitblas for the second time), | ||
# so only the results of the second run of bitblas are asserted. | ||
# The first run of bitblas only prints relevant information | ||
if backend == BACKEND.BITBLAS: | ||
self.inference(model_path=model_path, backend=backend, tokens_per_second=tokens_per_second, assert_result=False) | ||
|
||
self.inference(model_path=model_path, backend=backend, tokens_per_second=tokens_per_second) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
# Copyright 2025 ModelCloud | ||
# Contact: [email protected], x.com/qubitium | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
|
||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | ||
|
||
from gptqmodel.utils import BACKEND | ||
from parameterized import parameterized | ||
from inference_speed import InferenceSpeed | ||
|
||
|
||
class TestInferenceSpeedIpex(InferenceSpeed): | ||
@parameterized.expand( | ||
[ | ||
(InferenceSpeed.NATIVE_MODEL_ID, BACKEND.IPEX, 12), | ||
] | ||
) | ||
def test_inference_speed_ipex(self, model_path, backend, tokens_per_second): | ||
self.inference(model_path=model_path, backend=backend, tokens_per_second=tokens_per_second) |