Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/tc holland vtrans #833

Merged
merged 7 commits into from
Jan 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ Code freeze date: YYYY-MM-DD
- `Hazard.from_xarray_raster` now stores strings as default values for `Hazard.event_name` [#795](https://github.com/CLIMADA-project/climada_python/pull/795)
- Fix the dist_approx util function when used with method="geosphere" and log=True and points that are very close. [#792](https://github.com/CLIMADA-project/climada_python/pull/792)
- `climada.util.yearsets.sample_from_poisson`: fix a bug ([#819](https://github.com/CLIMADA-project/climada_python/issues/819)) and inconsistency that occurs when lambda events per year (`lam`) are set to 1. [[#823](https://github.com/CLIMADA-project/climada_python/pull/823)]
- In the TropCyclone class in the Holland model 2008 and 2010 implementation, a doublecounting of translational velocity is removed [#833](https://github.com/CLIMADA-project/climada_python/pull/833)

### Deprecated

Expand Down
33 changes: 20 additions & 13 deletions climada/hazard/test/test_trop_cyclone.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,9 +60,10 @@ def test_memory_limit(self):
tc_haz = TropCyclone.from_tracks(tc_track, centroids=CENTR_TEST_BRB, max_memory_gb=0.001)
intensity_idx = [0, 1, 2, 3, 80, 100, 120, 200, 220, 250, 260, 295]
intensity_values = [
25.60778909, 26.90887264, 28.26624642, 25.54092386, 31.21941738, 36.16596567,
21.11399856, 28.01452136, 32.65076804, 31.33884098, 0, 40.27002104,
22.74903, 23.784691, 24.82255, 22.67403, 27.218706, 30.593959,
18.980878, 24.540069, 27.826407, 26.846293, 0., 34.568898,
]

np.testing.assert_array_almost_equal(
tc_haz.intensity[0, intensity_idx].toarray()[0],
intensity_values,
Expand All @@ -72,12 +73,14 @@ def test_set_one_pass(self):
"""Test _tc_from_track function."""
intensity_idx = [0, 1, 2, 3, 80, 100, 120, 200, 220, 250, 260, 295]
intensity_values = {
"geosphere": [25.60794285, 26.90906280, 28.26649026, 25.54076797, 31.21986961,
36.17171808, 21.11408573, 28.01457948, 32.65349378, 31.34027741, 0,
40.27362679],
"equirect": [25.60778909, 26.90887264, 28.26624642, 25.54092386, 31.21941738,
36.16596567, 21.11399856, 28.01452136, 32.65076804, 31.33884098, 0,
40.27002104]
"geosphere": [
22.74927, 23.78498, 24.822908, 22.674202, 27.220042, 30.602122,
18.981022, 24.540138, 27.830925, 26.8489, 0., 34.572391,
],
"equirect": [
22.74903, 23.784691, 24.82255, 22.67403, 27.218706, 30.593959,
18.980878, 24.540069, 27.826407, 26.846293, 0., 34.568898,
]
}
# the values for the two metrics should agree up to first digit at least
for i, val in enumerate(intensity_values["geosphere"]):
Expand Down Expand Up @@ -108,7 +111,7 @@ def test_set_one_pass(self):

self.assertTrue(isinstance(tc_haz.intensity, sparse.csr_matrix))
self.assertEqual(tc_haz.intensity.shape, (1, 296))
self.assertEqual(np.nonzero(tc_haz.intensity)[0].size, 280)
self.assertEqual(np.nonzero(tc_haz.intensity)[0].size, 255)

np.testing.assert_array_almost_equal(
tc_haz.intensity[0, intensity_idx].toarray()[0], intensity_values[metric])
Expand All @@ -127,10 +130,14 @@ def test_windfield_models(self):
"""Test _tc_from_track function with different wind field models."""
intensity_idx = [0, 1, 2, 3, 80, 100, 120, 200, 220, 250, 260, 295]
intensity_values = {
"H08": [25.60778909, 26.90887264, 28.26624642, 25.54092386, 31.21941738, 36.16596567,
21.11399856, 28.01452136, 32.65076804, 31.33884098, 0, 40.27002104],
"H10": [27.604317, 28.720708, 29.894993, 27.52234 , 32.512395, 37.114355,
23.848917, 29.614752, 33.775593, 32.545347, 19.957627, 41.014578],
"H08": [
22.74903, 23.784691, 24.82255, 22.67403, 27.218706, 30.593959,
18.980878, 24.540069, 27.826407, 26.846293, 0., 34.568898,
],
"H10": [
24.745521, 25.596484, 26.475329, 24.690914, 28.650107, 31.584395,
21.723546, 26.140293, 28.94964, 28.051915, 18.49378, 35.312152,
],
# Holland 1980 and Emanuel & Rotunno 2011 use recorded wind speeds, while the above use
# pressure values only. That's why the results are so different:
"H1980": [21.376807, 21.957217, 22.569568, 21.284351, 24.254226, 26.971303,
Expand Down
76 changes: 50 additions & 26 deletions climada/hazard/trop_cyclone.py
Original file line number Diff line number Diff line change
Expand Up @@ -881,7 +881,7 @@
windfields = sparse.vstack(windfields, format="csr")
return intensity, windfields

def _compute_windfields(

Check warning on line 884 in climada/hazard/trop_cyclone.py

View check run for this annotation

Jenkins - WCR / Pylint

too-many-locals

LOW: Too many local variables (16/15)
Raw output
Used when a function or method has too many local variables.
si_track: xr.Dataset,
centroids: np.ndarray,
model: int,
Expand Down Expand Up @@ -955,11 +955,6 @@
si_track, d_centr, close_centr_msk, model, cyclostrophic=False,
)

# vectorial angular velocity
windfields = (
si_track.attrs["latsign"] * np.array([1.0, -1.0])[..., :] * v_centr_normed[:, :, ::-1]
)
windfields[close_centr_msk] *= v_ang_norm[close_centr_msk, None]

# Influence of translational speed decreases with distance from eye.
# The "absorbing factor" is according to the following paper (see Fig. 7):
Expand All @@ -969,11 +964,26 @@
# wind speed profiles in a GIS. UNED/GRID-Geneva.
# https://unepgrid.ch/en/resource/19B7D302
#
t_rad_bc = np.broadcast_arrays(si_track["rad"].values[:, None], d_centr)[0]
t_rad_bc = np.broadcast_to(si_track["rad"].values[:, None], d_centr.shape)
v_trans_corr = np.zeros_like(d_centr)
v_trans_corr[close_centr_msk] = np.fmin(
1, t_rad_bc[close_centr_msk] / d_centr[close_centr_msk])

if model in [MODEL_VANG['H08'], MODEL_VANG['H10']]:
# In these models, v_ang_norm already contains vtrans_norm, so subtract it first, before
# converting to vectors and then adding (vectorial) vtrans again. Make sure to apply the
# "absorbing factor" in both steps:
vtrans_norm_bc = np.broadcast_to(si_track["vtrans_norm"].values[:, None], d_centr.shape)
v_ang_norm[close_centr_msk] -= (
vtrans_norm_bc[close_centr_msk] * v_trans_corr[close_centr_msk]
)

# vectorial angular velocity
windfields = (
si_track.attrs["latsign"] * np.array([1.0, -1.0])[..., :] * v_centr_normed[:, :, ::-1]
peanutfun marked this conversation as resolved.
Show resolved Hide resolved
)
windfields[close_centr_msk] *= v_ang_norm[close_centr_msk, None]

# add angular and corrected translational velocity vectors
windfields[1:] += si_track["vtrans"].values[1:, None, :] * v_trans_corr[1:, :, None]
peanutfun marked this conversation as resolved.
Show resolved Hide resolved
windfields[np.isnan(windfields)] = 0
Expand Down Expand Up @@ -1407,11 +1417,15 @@
"""
hol_x = np.zeros_like(d_centr)
r_max, v_max_s, hol_b, d_centr, v_n, r_n = [
ar[close_centr] for ar in np.broadcast_arrays(
si_track["rad"].values[:, None], si_track["vmax"].values[:, None],
si_track["hol_b"].values[:, None], d_centr,
np.atleast_1d(v_n)[:, None], np.atleast_1d(r_n_km)[:, None],
)
np.broadcast_to(ar, d_centr.shape)[close_centr]
for ar in [
si_track["rad"].values[:, None],
si_track["vmax"].values[:, None],
si_track["hol_b"].values[:, None],
d_centr,
np.atleast_1d(v_n)[:, None],
np.atleast_1d(r_n_km)[:, None],
]
]

# convert to SI units
Expand Down Expand Up @@ -1470,11 +1484,15 @@
Absolute values of wind speeds (in m/s) in angular direction.
"""
v_ang = np.zeros_like(d_centr)
d_centr, v_max_s, r_max, hol_b, hol_x = [
ar[close_centr] for ar in np.broadcast_arrays(
d_centr, si_track["vmax"].values[:, None], si_track["rad"].values[:, None],
si_track["hol_b"].values[:, None], hol_x,
)
v_max_s, r_max, hol_b, d_centr, hol_x = [
np.broadcast_to(ar, d_centr.shape)[close_centr]
for ar in [
si_track["vmax"].values[:, None],
si_track["rad"].values[:, None],
si_track["hol_b"].values[:, None],
d_centr,
hol_x,
]
]

r_max_norm = (r_max / np.fmax(1, d_centr))**hol_b
Expand Down Expand Up @@ -1526,12 +1544,16 @@
Absolute values of wind speeds (m/s) in angular direction.
"""
v_ang = np.zeros_like(d_centr)
d_centr, r_max, hol_b, penv, pcen, coriolis_p = [
ar[close_centr] for ar in np.broadcast_arrays(
d_centr, si_track["rad"].values[:, None], si_track["hol_b"].values[:, None],
si_track["env"].values[:, None], si_track["cen"].values[:, None],
si_track["cp"].values[:, None]
)
r_max, hol_b, penv, pcen, coriolis_p, d_centr = [
np.broadcast_to(ar, d_centr.shape)[close_centr]
for ar in [
si_track["rad"].values[:, None],
si_track["hol_b"].values[:, None],
si_track["env"].values[:, None],
si_track["cen"].values[:, None],
si_track["cp"].values[:, None],
d_centr,
]
]

r_coriolis = 0
Expand Down Expand Up @@ -1587,12 +1609,14 @@
Absolute values of wind speeds (m/s) in angular direction.
"""
v_ang = np.zeros_like(d_centr)
d_centr, r_max, v_max, coriolis_p = [
ar[close_centr] for ar in np.broadcast_arrays(
d_centr, si_track["rad"].values[:, None],
r_max, v_max, coriolis_p, d_centr = [
np.broadcast_to(ar, d_centr.shape)[close_centr]
for ar in [
si_track["rad"].values[:, None],
si_track["vmax"].values[:, None],
si_track["cp"].values[:, None],
)
d_centr,
]
]

# compute the momentum at the maximum
Expand Down
Loading