Skip to content

Commit

Permalink
Expose subtree processing from the morph_stats api (#1034)
Browse files Browse the repository at this point in the history
  • Loading branch information
eleftherioszisis committed Jun 7, 2022
1 parent ba09932 commit eff04e8
Show file tree
Hide file tree
Showing 5 changed files with 194 additions and 16 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ Changelog
Version 4.0.0
-------------

- Mixed subtree processing can be used in morph_stats app via the use_subtrees flag.
- ``neurom.view.[plot_tree|plot_tree3d|plot_soma|plot_soma3D]`` were hidden from the
neurom.view module. They can still be imported from neurom.view.matplotlib_impl.
- Deprecated modules and classes were removed.
Expand Down
8 changes: 6 additions & 2 deletions neurom/apps/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,9 +95,13 @@ def view(input_file, is_3d, plane, backend, realistic_diameters):
help='If enabled the directory is treated as a population')
@click.option('-I', '--ignored-exceptions', help='Exception to ignore',
type=click.Choice(morph_stats.IGNORABLE_EXCEPTIONS.keys()))
def stats(datapath, config, output, full_config, as_population, ignored_exceptions):
@click.option('--use-subtrees', is_flag=True, show_default=True, default=False,
help="Enable mixed subtree processing.")
def stats(datapath, config, output, full_config, as_population, ignored_exceptions, use_subtrees):
"""Cli for apps/morph_stats."""
morph_stats.main(datapath, config, output, full_config, as_population, ignored_exceptions)
morph_stats.main(
datapath, config, output, full_config, as_population, ignored_exceptions, use_subtrees
)


@cli.command(short_help='Perform checks on morphologies, more details at'
Expand Down
47 changes: 33 additions & 14 deletions neurom/apps/morph_stats.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,14 +59,14 @@
IGNORABLE_EXCEPTIONS = {'SomaError': SomaError}


def _run_extract_stats(morph, config):
def _run_extract_stats(morph, config, use_subtrees=False):
"""The function to be called by multiprocessing.Pool.imap_unordered."""
if not isinstance(morph, Morphology):
morph = nm.load_morphology(morph)
return morph.name, extract_stats(morph, config)
return morph.name, extract_stats(morph, config, use_subtrees=use_subtrees)


def extract_dataframe(morphs, config, n_workers=1):
def extract_dataframe(morphs, config, n_workers=1, use_subtrees=False):
"""Extract stats grouped by neurite type from morphs.
Arguments:
Expand All @@ -83,6 +83,7 @@ def extract_dataframe(morphs, config, n_workers=1):
- morphology: same as neurite entry, but it will not be run on each neurite_type,
but only once on the whole morphology.
n_workers (int): number of workers for multiprocessing (on collection of morphs)
use_subtrees (bool): Enable of heterogeneous subtree processing.
Returns:
The extracted statistics
Expand All @@ -94,7 +95,7 @@ def extract_dataframe(morphs, config, n_workers=1):
if isinstance(morphs, Morphology):
morphs = [morphs]

func = partial(_run_extract_stats, config=config)
func = partial(_run_extract_stats, config=config, use_subtrees=use_subtrees)
if n_workers == 1:
stats = list(map(func, morphs))
else:
Expand All @@ -114,12 +115,12 @@ def extract_dataframe(morphs, config, n_workers=1):
extract_dataframe.__doc__ += str(EXAMPLE_CONFIG)


def _get_feature_stats(feature_name, morphs, modes, kwargs):
def _get_feature_stats(feature_name, morphs, modes, use_subtrees=False, **kwargs):
"""Insert the stat data in the dict.
If the feature is 2-dimensional, the feature is flattened on its last axis
"""
def stat_name_format(mode, feature_name, kwargs):
def stat_name_format(mode, feature_name, **kwargs):
"""Returns the key name for the data dictionary.
The key is a combination of the mode, feature_name and an optional suffix of all the extra
Expand All @@ -135,14 +136,16 @@ def stat_name_format(mode, feature_name, kwargs):
return f"{mode}_{feature_name}"

data = {}
value, func = _get_feature_value_and_func(feature_name, morphs, **kwargs)
value, func = _get_feature_value_and_func(
feature_name, morphs, use_subtrees=use_subtrees, **kwargs
)
shape = func.shape
if len(shape) > 2:
raise ValueError(f'Len of "{feature_name}" feature shape must be <= 2') # pragma: no cover

for mode in modes:

stat_name = stat_name_format(mode, feature_name, kwargs)
stat_name = stat_name_format(mode, feature_name, **kwargs)

stat = value
if isinstance(value, Sized):
Expand All @@ -161,7 +164,7 @@ def stat_name_format(mode, feature_name, kwargs):
return data


def extract_stats(morphs, config):
def extract_stats(morphs, config, use_subtrees=False):
"""Extract stats from morphs.
Arguments:
Expand All @@ -180,6 +183,7 @@ def extract_stats(morphs, config):
['min', 'max', 'median', 'mean', 'std', 'raw', 'sum']
- morphology: same as neurite entry, but it will not be run on each neurite_type,
but only once on the whole morphology.
use_subtrees (bool): Enable of heterogeneous subtree processing.
Returns:
The extracted statistics
Expand Down Expand Up @@ -215,12 +219,18 @@ def extract_stats(morphs, config):
for neurite_type in types:
feature_kwargs["neurite_type"] = neurite_type
stats[neurite_type.name].update(
_get_feature_stats(feature_name, morphs, modes, feature_kwargs)
_get_feature_stats(
feature_name, morphs, modes,
use_subtrees=use_subtrees, **feature_kwargs
)
)

else:
stats[category].update(
_get_feature_stats(feature_name, morphs, modes, feature_kwargs)
_get_feature_stats(
feature_name, morphs, modes,
use_subtrees=use_subtrees, **feature_kwargs
)
)

return dict(stats)
Expand Down Expand Up @@ -347,7 +357,15 @@ def _sanitize_config(config):
return config


def main(datapath, config, output_file, is_full_config, as_population, ignored_exceptions):
def main(
datapath,
config,
output_file,
is_full_config,
as_population,
ignored_exceptions,
use_subtrees=False
):
"""Main function that get statistics for morphologies.
Args:
Expand All @@ -357,6 +375,7 @@ def main(datapath, config, output_file, is_full_config, as_population, ignored_e
is_full_config (bool): should be statistics made over all possible features, modes, neurites
as_population (bool): treat ``datapath`` as directory of morphologies population
ignored_exceptions (list|tuple|None): exceptions to ignore when loading a morphology
use_subtrees (bool): Enable of heterogeneous subtree processing
"""
config = full_config() if is_full_config else get_config(config, EXAMPLE_CONFIG)

Expand All @@ -374,9 +393,9 @@ def main(datapath, config, output_file, is_full_config, as_population, ignored_e
)

if as_population:
results = {datapath: extract_stats(morphs, config)}
results = {datapath: extract_stats(morphs, config, use_subtrees=use_subtrees)}
else:
results = {m.name: extract_stats(m, config) for m in morphs}
results = {m.name: extract_stats(m, config, use_subtrees=use_subtrees) for m in morphs}

if not output_file:
print(json.dumps(results, indent=2, separators=(',', ':'), cls=NeuromJSON))
Expand Down
10 changes: 10 additions & 0 deletions tests/apps/test_cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,16 @@ def test_morph_stat_full_config():
assert not df.empty


def test_morph_stat_full_config__subtrees():
runner = CliRunner()
filename = DATA / 'h5/v1/Neuron.h5'
with tempfile.NamedTemporaryFile() as f:
result = runner.invoke(cli, ['stats', str(filename), '--full-config', '--use-subtrees', '--output', f.name])
assert result.exit_code == 0
df = pd.read_csv(f)
assert not df.empty


def test_morph_stat_invalid_config():
runner = CliRunner()
with tempfile.NamedTemporaryFile('w') as config_f:
Expand Down
144 changes: 144 additions & 0 deletions tests/test_mixed.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import pytest
import neurom
import numpy as np
import pandas as pd
import numpy.testing as npt
from neurom import NeuriteType
from neurom.features import get
Expand All @@ -14,6 +15,7 @@

import neurom.core.morphology
import neurom.features.neurite
import neurom.apps.morph_stats


@pytest.fixture
Expand Down Expand Up @@ -240,6 +242,148 @@ def assert_sections(neurite, section_type, iterator_type, expected_section_ids):
)


def test_mixed_morph_stats(mixed_morph):

def assert_stats_equal(actual_dict, expected_dict):
assert actual_dict.keys() == expected_dict.keys()
for (key, value) in actual_dict.items():
expected_value = expected_dict[key]
if value is None or expected_value is None:
assert expected_value is value
else:
npt.assert_almost_equal(value, expected_value, decimal=3, err_msg=f"\nKey: {key}")

cfg = {
'neurite': {
'max_radial_distance': ['mean'],
'number_of_sections': ['min'],
'number_of_bifurcations': ['max'],
'number_of_leaves': ['median'],
'total_length': ['min'],
'total_area': ['max'],
'total_volume': ['median'],
'section_lengths': ['mean'],
'section_term_lengths': ['mean'],
'section_bif_lengths': ['mean'],
'section_branch_orders': ['mean'],
'section_bif_branch_orders': ['mean'],
'section_term_branch_orders': ['mean'],
'section_path_distances': ['mean'],
'section_taper_rates': ['median'],
'local_bifurcation_angles': ['mean'],
'remote_bifurcation_angles': ['mean'],
'partition_asymmetry': ['mean'],
'partition_asymmetry_length': ['mean'],
'sibling_ratios': ['mean'],
'diameter_power_relations': ['median'],
'section_radial_distances': ['mean'],
'section_term_radial_distances': ['mean'],
'section_bif_radial_distances': ['mean'],
'terminal_path_lengths': ['mean'],
'section_volumes': ['min'],
'section_areas': ['mean'],
'section_tortuosity': ['mean'],
'section_strahler_orders': ['min']
},
'morphology': {
'soma_surface_area': ['mean'],
'soma_radius': ['max'],
'max_radial_distance': ['mean'],
'number_of_sections_per_neurite': ['median'],
'total_length_per_neurite': ['mean'],
'total_area_per_neurite': ['mean'],
'total_volume_per_neurite': ['mean'],
'number_of_neurites': ['median']
},
'neurite_type': ['AXON', 'BASAL_DENDRITE', 'APICAL_DENDRITE']
}

res = neurom.apps.morph_stats.extract_stats(mixed_morph, cfg, use_subtrees=False)

expected_axon_wout_subtrees = {
'max_number_of_bifurcations': 0,
'max_total_area': 0,
'mean_local_bifurcation_angles': None,
'mean_max_radial_distance': 0.0,
'mean_partition_asymmetry': None,
'mean_partition_asymmetry_length': None,
'mean_remote_bifurcation_angles': None,
'mean_section_areas': None,
'mean_section_bif_branch_orders': None,
'mean_section_bif_lengths': None,
'mean_section_bif_radial_distances': None,
'mean_section_branch_orders': None,
'mean_section_lengths': None,
'mean_section_path_distances': None,
'mean_section_radial_distances': None,
'mean_section_term_branch_orders': None,
'mean_section_term_lengths': None,
'mean_section_term_radial_distances': None,
'mean_section_tortuosity': None,
'mean_sibling_ratios': None,
'mean_terminal_path_lengths': None,
'median_diameter_power_relations': None,
'median_number_of_leaves': 0,
'median_section_taper_rates': None,
'median_total_volume': 0,
'min_number_of_sections': 0,
'min_section_strahler_orders': None,
'min_section_volumes': None,
'min_total_length': 0
}

assert_stats_equal(res["axon"], expected_axon_wout_subtrees)

res_df = neurom.apps.morph_stats.extract_dataframe(mixed_morph, cfg, use_subtrees=False)

# get axon column and tranform it to look like the expected values above
values = res_df.loc[pd.IndexSlice[:, "axon"]].iloc[0, :].to_dict()
assert_stats_equal(values, expected_axon_wout_subtrees)


res = neurom.apps.morph_stats.extract_stats(mixed_morph, cfg, use_subtrees=True)

expected_axon_with_subtrees = {
'max_number_of_bifurcations': 2,
'max_total_area': 3.4018507611950346,
'mean_local_bifurcation_angles': 2.356194490192345,
'mean_max_radial_distance': 4.472136,
'mean_partition_asymmetry': 0.25,
'mean_partition_asymmetry_length': 0.1846990320847273,
'mean_remote_bifurcation_angles': 2.356194490192345,
'mean_section_areas': 0.6803701522390069,
'mean_section_bif_branch_orders': 1.5,
'mean_section_bif_lengths': 1.2071068,
'mean_section_bif_radial_distances': 3.9240959,
'mean_section_branch_orders': 2.2,
'mean_section_lengths': 1.0828427,
'mean_section_path_distances': 2.614213538169861,
'mean_section_radial_distances': 4.207625,
'mean_section_term_branch_orders': 2.6666666666666665,
'mean_section_term_lengths': 1.0,
'mean_section_term_radial_distances': 4.396645,
'mean_section_tortuosity': 1.0,
'mean_sibling_ratios': 1.0,
'mean_terminal_path_lengths': 3.0808802048365274,
'median_diameter_power_relations': 2.0,
'median_number_of_leaves': 3,
'median_section_taper_rates': 8.6268466e-17,
'median_total_volume': 0.17009254152367845,
'min_number_of_sections': 5,
'min_section_strahler_orders': 1,
'min_section_volumes': 0.03141592778425469,
'min_total_length': 5.414213538169861
}

assert_stats_equal(res["axon"], expected_axon_with_subtrees)

res_df = neurom.apps.morph_stats.extract_dataframe(mixed_morph, cfg, use_subtrees=True)

# get axon column and tranform it to look like the expected values above
values = res_df.loc[pd.IndexSlice[:, "axon"]].iloc[0, :].to_dict()
assert_stats_equal(values, expected_axon_with_subtrees)


@pytest.fixture
def population(mixed_morph):
return Population([mixed_morph, mixed_morph])
Expand Down

0 comments on commit eff04e8

Please sign in to comment.