- How to use
- How to compile
- How to train (Pascal VOC Data)
- How to train (to detect your custom objects)
- How to mark bounded boxes of objects and create annotation files
https://arxiv.org/abs/1612.08242 |
---|
A yolo windows version (for object detection)
Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
This repository is forked from Linux-version: https://github.com/pjreddie/darknet
More details: http://pjreddie.com/darknet/yolo/
- MS Visual Studio 2015 (v140): https://www.microsoft.com/download/details.aspx?id=48146
- CUDA 8.0 for Windows x64: https://developer.nvidia.com/cuda-downloads
- OpenCV 2.4.9: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe/download
- To compile without OpenCV - remove define OPENCV from: Visual Studio->Project->Properties->C/C++->Preprocessor
- To compile with different OpenCV version - change in file yolo.c each string look like #pragma comment(lib, "opencv_core249.lib") from 249 to required version.
- With OpenCV will show image or video detection in window and store result to: test_dnn_out.avi
Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
yolo.cfg
(256 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weightsyolo-voc.cfg
(256 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weightstiny-yolo.cfg
(60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weightstiny-yolo-voc.cfg
(60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights
Put it near compiled: darknet.exe
You can get cfg-files by path: darknet/cfg/
Others: https://www.youtube.com/channel/UC7ev3hNVkx4DzZ3LO19oebg
darknet_voc.cmd
- initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image filedarknet_demo_voc.cmd
- initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: test_dnn_out.avidarknet_net_cam_voc.cmd
- initialization with 256 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone) and store result to: test_dnn_out.avidarknet_web_cam_voc.cmd
- initialization with 256 MB VOC-model, play video from Web-Camera number #0 and store result to: test_dnn_out.avi
- 256 MB COCO-model - image:
darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2
- Alternative method 256 MB COCO-model - image:
darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2
- 256 MB VOC-model - image:
darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0
- 256 MB COCO-model - video:
darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0
- 256 MB VOC-model - video:
darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0
- Alternative method 256 MB VOC-model - video:
darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0
- 60 MB VOC-model for video:
darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0
- 256 MB COCO-model for net-videocam - Smart WebCam:
darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0
- 256 MB VOC-model for net-videocam - Smart WebCam:
darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0
- 256 MB VOC-model - WebCamera #0:
darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0
- Download for Android phone mjpeg-stream soft: IP Webcam / Smart WebCam
Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
- Connect your Android phone to computer by WiFi (through a WiFi-router) or USB
- Start Smart WebCam on your phone
- Replace the address below, on shown in the phone application (Smart WebCam) and launch:
- 256 MB COCO-model:
darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0
- 256 MB VOC-model:
darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0
-
If you have MSVS 2015, CUDA 8.0 and OpenCV 2.4.9 (with paths:
C:\opencv_2.4.9\opencv\build\include
&C:\opencv_2.4.9\opencv\build\x64\vc12\lib
orvc14\lib
), then start MSVS, openbuild\darknet\darknet.sln
, set x64 and Release, and do the: Build -> Build darknet -
If you have other version of CUDA (not 8.0) then open
build\darknet\darknet.vcxproj
by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1 -
If you have other version of OpenCV 2.4.x (not 2.4.9) then you should change pathes after
\darknet.sln
is opened
3.1 (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories
3.2 (right click on project) -> properties -> Linker -> General -> Additional Library Directories
3.3 Open file: \src\yolo.c
and change 3 lines to your OpenCV-version - 249
(for 2.4.9), 2413
(for 2.4.13), ... :
* `#pragma comment(lib, "opencv_core249.lib")`
* `#pragma comment(lib, "opencv_imgproc249.lib")`
* `#pragma comment(lib, "opencv_highgui249.lib")`
-
If you have other version of OpenCV 3.x (not 2.4.x) then you should change many places in code by yourself.
-
If you want to build with CUDNN to speed up then:
-
download and install CUDNN: https://developer.nvidia.com/cudnn
-
add Windows system variable
cudnn
with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg -
open
\darknet.sln
-> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line:CUDNN;
-
Also, you can to create your own darknet.sln
& darknet.vcxproj
, this example for CUDA 8.0 and OpenCV 2.4.9
Then add to your created project:
- (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories, put here:
C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include
- (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
- add to project all .c & .cu files from
\src
- (right click on project) -> properties -> Linker -> General -> Additional Library Directories, put here:
C:\opencv_2.4.9\opencv\build\x64\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)
- (right click on project) -> properties -> Linker -> Input -> Additional dependecies, put here:
..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)
-
(right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
-
open file:
\src\yolo.c
and change 3 lines to your OpenCV-version -249
(for 2.4.9),2413
(for 2.4.13), ... :#pragma comment(lib, "opencv_core249.lib")
#pragma comment(lib, "opencv_imgproc249.lib")
#pragma comment(lib, "opencv_highgui249.lib")
OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- compile to .exe (X64 & Release) and put .dll-s near with .exe:
pthreadVC2.dll, pthreadGC2.dll
from \3rdparty\dll\x64
cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll
- 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
-
Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory
build\darknet\x64
-
Download The Pascal VOC Data and unpack it to directory
build\darknet\x64\data\voc
: http://pjreddie.com/projects/pascal-voc-dataset-mirror/ will be created filevoc_label.py
and\VOCdevkit\
dir -
Download and install Python for Windows: https://www.python.org/ftp/python/3.5.2/python-3.5.2-amd64.exe
-
Run command:
python build\darknet\x64\data\voc\voc_label.py
(to generate files: 2007_test.txt, 2007_train.txt, 2007_val.txt, 2012_train.txt, 2012_val.txt) -
Run command:
type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt
-
Start training by using
train_voc.cmd
or by using the command line:darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23
If required change pathes in the file build\darknet\x64\data\voc.data
More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc
-
Train it first on 1 GPU for like 1000 iterations:
darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23
-
Then stop and by using partially-trained model
/backup/yolo-voc_1000.weights
run training with multigpu (up to 4 GPUs):darknet.exe detector train data/voc.data yolo-voc.cfg yolo-voc_1000.weights -gpus 0,1,2,3
https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
- Create file
yolo-obj.cfg
with the same content as inyolo-voc.cfg
(or copyyolo-voc.cfg
toyolo-obj.cfg)
and:
- change line
classes=20
to your number of objects - change line
filters=425
tofilters=(classes + 5)*5
(generally this depends on thenum
andcoords
, i.e. equal to(classes + coords + 1)*num
)
For example, for 2 objects, your file yolo-obj.cfg
should differ from yolo-voc.cfg
in such lines:
[convolutional]
filters=35
[region]
classes=2
-
Create file
obj.names
in the directorybuild\darknet\x64\data\
, with objects names - each in new line -
Create file
obj.data
in the directorybuild\darknet\x64\data\
, containing (where classes = number of objects):
classes= 2
train = train.txt
valid = test.txt
names = obj.names
backup = backup/
-
Put image-files (.jpg) of your objects in the directory
build\darknet\x64\data\obj\
-
Create
.txt
-file for each.jpg
-image-file - with the same name, but with.txt
-extension, and put to file: object number and object coordinates on this image, for each object in new line:<object-class> <x> <y> <width> <height>
Where:
<object-class>
- integer number of object from0
to(classes-1)
<x> <y> <width> <height>
- float values relative to width and height of image, it can be equal from 0.0 to 1.0- for example:
<x> = <absolute_x> / <image_width>
or<height> = <absolute_height> / <image_height>
- atention:
<x> <y>
- are center of rectangle (are not top-left corner)
For example for img1.jpg
you should create img1.txt
containing:
1 0.716797 0.395833 0.216406 0.147222
0 0.687109 0.379167 0.255469 0.158333
1 0.420312 0.395833 0.140625 0.166667
- Create file
train.txt
in directorybuild\darknet\x64\data\
, with filenames of your images, each filename in new line, with path relative todarknet.exe
, for example containing:
data/obj/img1.jpg
data/obj/img2.jpg
data/obj/img3.jpg
-
Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory
build\darknet\x64
-
Start training by using the command line:
darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23
-
After training is complete - get result
yolo-obj_final.weights
from pathbuild\darknet\x64\backup\
-
After each 1000 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy
yolo-obj_2000.weights
frombuild\darknet\x64\backup\
tobuild\darknet\x64\
and start training using:darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights
-
Also you can get result earlier than all 45000 iterations, for example, usually sufficient 2000 iterations for each class(object). I.e. for 6 classes to avoid overfitting - you can stop training after 12000 iterations and use
yolo-obj_12000.weights
to detection.
Example of custom object detection: darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_3000.weights
Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2: https://github.com/AlexeyAB/Yolo_mark
With example of: train.txt
, obj.names
, obj.data
, yolo-obj.cfg
, air
1-6.txt
, bird
1-4.txt
for 2 classes of objects (air, bird) and train_obj.cmd
with example how to train this image-set with Yolo v2