- steps:
- Download MNIST dataset to:
- TRAIN_IMAGE:
local/mnist/train-images.idx3-ubyte
- TRAIN_LABEL:
local/mnist/train-labels.idx1-ubyte
- TEST_IMAGE:
local/mnist/t10k-images.idx3-ubyte
- TEST_LABEL:
local/mnist/t10k-labels.idx1-ubyte
- TRAIN_IMAGE:
- Run:
cargo test --release -- --include-ignored --nocapture mnist::train
- Inspect parameters at:
local/mnist/params.ron
- Download MNIST dataset to:
- distribution of addends of
$\frac{\partial G}{\partial f_1}$ :- a part of the computation graph
$h_i : \mathbb{R}^{m_i} \to \mathbb{R}$ $f_j : \mathbb{R}^{n_j} \to \mathbb{R}$ -
$h_i$ are the successors of$f_j$ -
$G$ is the outmost function represented by the root node of the computation graph -
$w$ is the tunable parameters of$f_1$ - steps:
- nodes
$h_1, h_2$ calculate the addends respectively - nodes
$h_1, h_2$ distribute the addends to$f_1, f_2$ - node
$f_1$ calculates$\frac{\partial G}{\partial f_1}$ from the received addends - node
$f_1$ calculates$\frac{\partial G}{\partial w}$ using$\frac{\partial G}{\partial f_1}$ - node
$f_1$ updates$w$ using$\frac{\partial G}{\partial w}$
- nodes
- the repo on which mine is based - https://github.com/pim-book/programmers-introduction-to-mathematics