-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1a58e28
commit 10d7494
Showing
2 changed files
with
154 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
--- | ||
layout: default | ||
title: "Theorem 𝜔-1" | ||
description: "This theorem establishes a simple upper bound on the Wainer hierarchy up to 𝜔 in terms of hyper operators." | ||
--- | ||
# {{ site.title }} | ||
## Theorem $$\omega$$-1 | ||
|
||
This theorem establishes a simple upper bound on the [Wainer hierarchy](https://en.wikipedia.org/wiki/Fast-growing_hierarchy#The_Wainer_hierarchy) up to $$\omega$$ in terms of [hyper operators](https://en.wikipedia.org/wiki/Hyperoperation). | ||
|
||
$$ | ||
\begin{align*} | ||
2 \cdot f_\alpha(n) &\le 2 [\alpha + 1] (2 \cdot n) \text{ for } \alpha < \omega \\ | ||
2 \cdot f_\omega(n) &\le 2 [n + 1] (2 \cdot n) \\ | ||
\end{align*} | ||
$$ | ||
|
||
[The correctness of this bound was originally proven by Deedlit](https://googology.fandom.com/wiki/User_blog:D57799/Ranging_FGH_before_omega#Deedlit.27s_proof) for $$1 \le \alpha < \omega$$ and $$n \ge 1$$. This proof follows the same approach as Deedlit's proof. It is worth noting that Deedlit has also proven the correctness of a [more complicated but tighter upper bound](https://math.stackexchange.com/a/1810305). | ||
|
||
### Lemma $$\omega$$-0 | ||
|
||
In order for $$2 \cdot f^m(n) \le g^m(2 \cdot n)$$ to hold for all $$m, n \in \N_0$$, it is sufficient for the following conditions to be met. | ||
|
||
1. $$f$$ is a function $$f : \N_0 \to \N_0$$ | ||
2. $$g$$ is a [non-decreasing function](https://en.wikipedia.org/wiki/Monotonic_function) $$g : \N_0 \to \N_0$$ | ||
3. $$2 \cdot f(n) \le g(2 \cdot n)$$ for all $$n \in \N_0$$ | ||
|
||
#### Proof | ||
|
||
Base case: | ||
|
||
$$ | ||
\begin{align*} | ||
2 \cdot f^0(n) &= 2 \cdot n \\ | ||
&= g^0(2 \cdot n) \\ | ||
\end{align*} | ||
$$ | ||
|
||
Induction step for $$m$$: | ||
|
||
$$ | ||
\begin{align*} | ||
2 \cdot f^m(n) &\le g^m(2 \cdot n) &&\text{by the induction hypothesis} \\ | ||
g(2 \cdot f^m(n)) &\le g(g^m(2 \cdot n)) &&\text{by conditions 1 and 2} \\ | ||
2 \cdot f(f^m(n)) &\le g(g^m(2 \cdot n)) &&\text{by condition 3} \\ | ||
2 \cdot f^{m + 1}(n) &\le g^{m + 1}(2 \cdot n) \\ | ||
\end{align*} | ||
$$ | ||
|
||
### Lemma $$\omega$$-1 | ||
|
||
$$2 \cdot n \le 2 [m] n$$ for all $$m, n \in \N_0, m \ge 2$$. | ||
|
||
#### Proof | ||
|
||
Base cases where $$m = 2$$: | ||
|
||
$$ | ||
\begin{align*} | ||
2 \cdot n &= 2 [2] n \\ | ||
\end{align*} | ||
$$ | ||
|
||
Base cases where $$n = 0$$ and $$m \ge 3$$: | ||
|
||
$$ | ||
\begin{align*} | ||
2 \cdot 0 &= 0 \\ | ||
&< 1 \\ | ||
&= 2 [m] 0 \\ | ||
\end{align*} | ||
$$ | ||
|
||
Base cases where $$n = 1$$: | ||
|
||
$$ | ||
\begin{align*} | ||
2 \cdot 1 &= 2 \\ | ||
&= 2 [m] 1 \\ | ||
\end{align*} | ||
$$ | ||
|
||
Induction step for $$n \ge 1$$, with the assumption that the lemma holds for $$m$$: | ||
|
||
$$ | ||
\begin{align*} | ||
2 \cdot (n + 1) &= 2 \cdot n + 2 \\ | ||
&\le 2 \cdot n + 2 \cdot n \\ | ||
&= 2 \cdot (2 \cdot n) \\ | ||
&\le 2 \cdot (2 [m + 1] n) &&\text{by the induction hypothesis} \\ | ||
&\le 2 [m] (2 [m + 1] n) &&\text{by assumption} \\ | ||
&= 2 [m + 1] (n + 1) \\ | ||
\end{align*} | ||
$$ | ||
|
||
Performing induction over $$m$$ completes the proof. | ||
|
||
### Lemma $$\omega$$-2 | ||
|
||
$$(2 [\alpha + 1])^m (2 [\alpha + 2] n) = 2 [\alpha + 2] (n + m)$$ for all $$m, n, \alpha \in \N_0$$. | ||
|
||
#### Proof | ||
|
||
Base case: | ||
|
||
$$ | ||
\begin{align*} | ||
(2 [\alpha + 1])^0 (2 [\alpha + 2] n) &= 2 [\alpha + 2] n \\ | ||
&= 2 [\alpha + 2] (n + 0) \\ | ||
\end{align*} | ||
$$ | ||
|
||
Induction step for $$m$$: | ||
|
||
$$ | ||
\begin{align*} | ||
(2 [\alpha + 1])^{m+1} (2 [\alpha + 2] n) &= 2 [\alpha + 1] ((2 [\alpha + 1])^m (2 [\alpha + 2] n)) \\ | ||
&= 2 [\alpha + 1] (2 [\alpha + 2] (n + m)) &&\text{by the induction hypothesis} \\ | ||
&= 2 [\alpha + 2] (n + m + 1) \\ | ||
\end{align*} | ||
$$ | ||
|
||
### Proof of Theorem $$\omega$$-1 | ||
|
||
Base case: | ||
|
||
$$ | ||
\begin{align*} | ||
2 \cdot f_0(n) &= 2 \cdot (n + 1) \\ | ||
&= 2 + (2 \cdot n) \\ | ||
&= 2 [0 + 1] (2 \cdot n)\\ | ||
\end{align*} | ||
$$ | ||
|
||
Induction step for $$\alpha$$: | ||
|
||
$$ | ||
\begin{align*} | ||
2 \cdot f_{\alpha + 1}(n) &= 2 \cdot f_\alpha^n(n) \\ | ||
&\le (2 [\alpha + 1])^n (2 \cdot n) &&\text{by the induction hypothesis and Lemma } \omega\text{-0} \\ | ||
&\le (2 [\alpha + 1])^n (2 [\alpha + 2] n) &&\text{by Lemma } \omega\text{-1} \\ | ||
&= 2 [\alpha + 2] (2 \cdot n) &&\text{by Lemma } \omega\text{-2} \\ | ||
\end{align*} | ||
$$ | ||
|
||
Case where $$\alpha = \omega$$: | ||
|
||
$$ | ||
\begin{align*} | ||
2 \cdot f_\omega(n) &= 2 \cdot f_{\omega[n]}(n) \\ | ||
&= 2 \cdot f_n(n) \\ | ||
&\le 2 [n + 1] (2 \cdot n) &&\text{by the previous cases} \\ | ||
\end{align*} | ||
$$ |