This repository contains the code for our SIGIR 2020 paper : MarkedBERT: Integrating Traditional IR cues in pre-trained language models for passage retrieval.
This code is no longer maintained. Check my new repository using tensorflow 2.0 for training on both GPU and Colab TPU is available, the newly trained checkpoints are available on hugginface hub. It is important to note that the new checkpoints are trained with more data and thus lead to different performance.
We use the traditional BM25 to retrieve an intital list of the top 1000 passages per query. To avoid the "vocabulary mismatch" problem we apply the Doc2query passage expansion technique by (Nogueira et al., 2019). Here is the link to the github repo.
First we need to put MsMarco data in the appropriate format.
- Links for dowmloading MsMarco corpus :
DATA_DIR=./Data
mkdir $DATA_DIR
wget https://msmarco.blob.core.windows.net/msmarcoranking/triples.train.small.tar.gz -P ${DATA_DIR}
wget https://msmarco.blob.core.windows.net/msmarcoranking/top1000.dev.tar.gz -P ${DATA_DIR}
wget https://msmarco.blob.core.windows.net/msmarcoranking/qrels.dev.small.tsv -P ${DATA_DIR}
wget https://msmarco.blob.core.windows.net/msmarcoranking/queries.train.tsv -P ${DATA_DIR}
wget https://msmarco.blob.core.windows.net/msmarcoranking/collection.tar.gz -P ${DATA_DIR}
tar -xvf ${DATA_DIR}/triples.train.small.tar.gz -C ${DATA_DIR}
tar -xvf ${DATA_DIR}/top1000.dev.tar.gz -C ${DATA_DIR}
tar -xvf ${DATA_DIR}/collection.tar.gz -C ${DATA_DIR}
-
Fine-tuning Data : Use the
construct_dataset_msmarco.ipynb
notebook to obtain the.csv
file containing unique pairs from thetriples.train.small.tsv
file and balanced number of relevant/ non-relevant pairs. -
Inference data: Once you get the run file from the first stage (download here). Use the notebook that produces two files, the first is the the data file
dataset.csv
and the second is the query-passage ids mapping filequery_doc_ids.txt
.
Basic BERT-base model re-ranker that uses [CLS] token for classification. Use the script below to fine-tune this model and evaluate it:
python ./Modeling/modeling_base.py \
--data_dir=$DATA_DIR \
--output_dir=$OUTPUT_DIR \
--max_seq_length=512 \
--do_train \
--do_eval \
--per_gpu_eval_batch_size=32 \
--per_gpu_train_batch_size=32 \
--gradient_accumulation_steps=1 \
--learning_rate=3e-6 \
--weight_decay=0.01 \
--adam_epsilon=1e-8 \
--max_grad_norm=1.0 \
--num_train_epochs=2 \
--warmup_steps=10398 \
--logging_steps=1000 \
--save_steps=25996 \
--seed=42 \
--local_rank=-1 \
--overwrite_output_dir
- We first need to mark both the training dataset and the dev set using this script:
python ./Markers/simple_marker.py \
--data_path=$path_to_dataset.csv
--output_path=$path_to_marked_data
- Fine-tune the BERT-base model using the
marked
data and evaluate it on themarked
dev set :
python ./Modeling/modeling_markers.py \
--data_dir=$DATA_DIR \
--output_dir=$OUTPUT_DIR \
--max_seq_length=512 \
--do_train \
--do_eval \
--do_lower_case\
--per_gpu_eval_batch_size=32 \
--per_gpu_train_batch_size=32 \
--gradient_accumulation_steps=1 \
--learning_rate=3e-6 \
--weight_decay=0.01 \
--adam_epsilon=1e-8 \
--max_grad_norm=1.0 \
--num_train_epochs=4 \
--warmup_steps=10398 \
--logging_steps=1000 \
--save_steps=25996 \
--seed=42 \
--local_rank=-1 \
--overwrite_output_dir
We use Anserini evaluation script for msmarco. The evaluation_script.ipynb
notebook illustrates the steps for downloading Anserini and use it in googe colab notebook in order to evaluate the run files obtained above.