-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils_ner.py
278 lines (252 loc) · 11.8 KB
/
utils_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """
from __future__ import absolute_import, division, print_function
import logging
import os
from io import open
from transformers import AutoTokenizer
logger = logging.getLogger(__name__)
def get_labels(labels_path, data_dir=None, file_list=None):
"""get labels from labels_path at first, else enumerate labels from train/dev/test files from data_dir/file_list"""
labels_set = set()
labels = list()
if labels_path and os.path.exists(labels_path):
with open(labels_path, "r") as rf:
labels = rf.read().splitlines()
if "O" not in labels:
labels = ["O"] + labels
elif file_list:
for file in file_list:
if data_dir:
pfn = os.path.join(data_dir, file)
else:
pfn = file
with open(pfn, 'r', encoding='utf-8') as rf:
for line in rf.readlines():
line = line.rstrip()
if not line or (line.startswith('###') and line.endswith('$$$')):
continue
tokens = line.split("\t")
if len(tokens) >= 2:
if tokens[-1] != "O":
labels_set.add(tokens[-1][2:])
labels = ["O"]
for label in labels_set:
labels.extend(["B-"+label, "I-"+label])
else:
labels = ['O',]
return labels
def update_data_to_max_len(max_len, in_data_file, out_data_file, model_name_or_path, sep_tag_type='tab'):
sep_tag = ' ' if sep_tag_type=='space' else '\t'
print(f'update data to max len {max_len} for {in_data_file} to {out_data_file}...')
sent_word_tokened_len = 0
sent_word_tokened_since_previous_B_len = 0
label_previous_B_num = 0
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
# no num_special_tokens_to_add() in tokenizer under transformer v3
# just ignore it, take 4 by default (2 generally for ner, 4 for paired tasks like translation task)
#max_len -= tokenizer.num_special_tokens_to_add(),
max_len -= 4
out_data = []
#if out_data_file:
# out_fp = open(out_data_file, 'w', encoding='utf-8')
#else:
# out_fp = None
show_count = 0
with open(in_data_file, "rt") as in_fp:
for line in in_fp:
line = line.rstrip()
if (not line) or (line.startswith('###') and line.endswith('$$$')):
#print(line) #, file=out_fp)
out_data.append(line)
sent_word_tokened_len = 0
sent_word_tokened_since_previous_B_len
label_previous_B_num = 0
continue
line_sep = line.split(sep_tag)
word = line_sep[0]
label = line_sep[-1]
word_tokened = tokenizer.tokenize(word)
current_word_tokened_len = len(word_tokened)
if (current_word_tokened_len > 1) and (show_count < 3):
show_count += 1
print("{}->{}".format(word, ','.join(word_tokened)))
# Token contains strange control characters like \x96 or \x95,
# Filter out the complete line
if current_word_tokened_len == 0:
print(f'Warning: {word} tokenized to empty str in {line}')
continue
if (sent_word_tokened_len + current_word_tokened_len) > max_len:
#print("", file=out_fp)
#print(line, file=out_fp)
sent_idx = len(out_data) - label_previous_B_num
out_data.insert(sent_idx, '')
sent_word_tokened_len = sent_word_tokened_since_previous_B_len
#line = '{}{}{}'.format(word, sep_tag, label)
#print(line, file=out_fp)
#print(line)
out_data.append(line)
sent_word_tokened_len += current_word_tokened_len
if label == 'O':
label_previous_B_num = 0
sent_word_tokened_since_previous_B_len = 0
else:
label_previous_B_num += 1
sent_word_tokened_since_previous_B_len += current_word_tokened_len
if out_data_file:
with open(out_data_file, 'w', encoding='utf-8') as wf:
wf.write('\n'.join(out_data))
class InputExample(object):
"""A single training/test example for token classification."""
def __init__(self, guid, words, labels):
self.guid = guid
self.words = words
self.labels = labels
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_ids = label_ids
# mode will be like [train|test|dev].[txt|bio]
def read_examples_from_file(data_dir, mode):
file_path = os.path.join(data_dir, mode)
guid_index = 1
examples = []
with open(file_path, encoding="utf-8") as f:
words = []
labels = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n" or \
(line.startswith('###') and line.endswith('$$$\n')):
if words:
assert len(words) == len(labels)
examples.append(InputExample(guid="{}-{}".format(mode, guid_index),
words=words,
labels=labels))
guid_index += 1
words = []
labels = []
else:
splits = line.split()
words.append(splits[0])
if len(splits) > 1:
labels.append(splits[-1].replace("\n", ""))
else:
labels.append("O")
if words:
assert len(words) == len(labels)
examples.append(InputExample(guid="%s-%d".format(mode, guid_index),
words=words,
labels=labels))
return examples
def convert_examples_to_features(examples,
label_list,
max_seq_length,
tokenizer,
cls_token_at_end=False,
cls_token="[CLS]",
cls_token_segment_id=1,
sep_token="[SEP]",
sep_token_extra=False,
pad_on_left=False,
pad_token=0,
pad_token_segment_id=0,
pad_token_label_id=-1,
sequence_a_segment_id=0,
mask_padding_with_zero=True):
label_map = {label: i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 1000 == 0:
logger.info("Writing example %d of %d", ex_index, len(examples))
tokens = []
label_ids = []
for word, label in zip(example.words, example.labels):
word_tokens = tokenizer.tokenize(word)
if len(word_tokens) <= 0:
print(f'{word} tokenized to empty word!')
tokens.append(word)
label_ids.append(label_map[label])
else:
tokens.extend(word_tokens)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1))
if tokens.count('[UNK]') > 3:
print(f"TOO MANY UNK:{tokens.count('[UNK')} in tokenized {example.words}")
labels_len = len(label_ids)
tokens_len = len(tokens)
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
special_tokens_count = 3 if sep_token_extra else 2
if len(tokens) > max_seq_length - special_tokens_count:
print(f'Tokens length {len(tokens)}+{special_tokens_count} exceed max_seq_length {max_seq_length}')
tokens = tokens[:(max_seq_length - special_tokens_count)]
label_ids = label_ids[:(max_seq_length - special_tokens_count)]
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
segment_ids = [sequence_a_segment_id] * len(tokens)
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
tokens = [cls_token] + tokens
label_ids = [pad_token_label_id] + label_ids
segment_ids = [cls_token_segment_id] + segment_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_len = len(input_ids)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_seq_length - len(input_ids)
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids
label_ids = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += ([pad_token] * padding_length)
input_mask += ([0 if mask_padding_with_zero else 1] * padding_length)
segment_ids += ([pad_token_segment_id] * padding_length)
label_ids += ([pad_token_label_id] * padding_length)
if len(label_ids) != max_seq_length:
logger.info("*** Error ***")
logger.info("guid: %s", example.guid)
logger.info("tokens: %s", " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
logger.info("label_ids: %s", " ".join([str(x) for x in label_ids]))
logger.info("labels_len: %s", str(labels_len))
logger.info("tokens_len: %s", str(tokens_len))
logger.info("input_len: %s", str(input_len))
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_ids=label_ids))
return features