Skip to content

Armandolando/FLAME

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FLAME (Unofficial)

Unofficial implementation for paper FLAME: Taming Backdoors in Federated Learning, if there is any problem, please let me know.

paper FLAME: Taming Backdoors in Federated Learning is from https://www.usenix.org/system/files/sec22-nguyen.pdf

Please contact me if you have any difficulty to run the code in issue.

Results

Here ASR indicates attack success rate also called backdoor success rate, and Acc indicates accuracy of the main tasks.

Dataset Model Attack Defence ASR Acc iid
CIFAR-10 ResNet18 Badnet No Defence 70.2 80.38 IID
CIFAR-10 ResNet18 Badnet FLAME 3.33 78.77 IID
CIFAR-10 ResNet18 Badnet No Defence 70.53 77.58 Non-IID
CIFAR-10 ResNet18 Badnet FLAME 7.22 76.04 Non-IID
Fashio-MNIST CNN Badnet No Defence 99.92 84.15 IID
Fashio-MNIST CNN Badnet FLAME 0.23 83.7 IID
Fashio-MNIST CNN Badnet No Defence 99.33 81.95 Non-IID
Fashio-MNIST CNN Badnet FLAME 0.18 80.95 Non-IID

Requirement

Python=3.9

pytorch=1.10.1

scikit-learn=1.0.2

opencv-python=4.5.5.64

Scikit-Image=0.19.2

matplotlib=3.4.3

hdbscan=0.8.28

jupyterlab=3.3.2

Install instruction are recorded in install_requirements.sh

Run

VGG and ResNet18 can only be trained on CIFAR-10 dataset, while CNN can only be trained on fashion-MNIST dataset.

python main_fed.py      --dataset cifar,fashion_mnist \
                        --model VGG,resnet,cnn \
                        --attack badnet,dba \
                        --lr 0.1 \
                        --malicious 0.1 \
                        --poison_frac 1.0 \
                        --local_ep 2 \
                        --local_bs 64 \
                        --attack_begin 0 \
                        --defence avg,fltrust,flame,krum,RLR \
                        --epochs 200 \
                        --attack_label 5 \
                        --attack_goal -1 \
                        --trigger 'square','pattern','watermark','apple' \
                        --triggerX 27 \
                        --triggerY 27 \
                        --gpu 0 \
                        --save save/your_experiments \
                        --iid 0,1 

Emample with with the Fashoin-MNIST dataset:

python main_fed.py --dataset fashion_mnist --model cnn --attack badnet --lr 0.1 --malicious 0.1 --poison_frac 1.0 --local_ep 1 --local_bs 256 --attack_begin 0 --defence avg --epochs 200 --attack_label 5 --attack_goal -1 --trigger 'square' --triggerX 22 --triggerY 22 --iid 1 --tau 0.8 --frac 0.2

Images with triggers on attack process and test process are shown in './save' when running. Results files are saved in './save' by default, including a figure and a accuracy record. More default parameters on different defense strategies or attack can be seen in './utils/options'.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Shell 0.7%