Kaggle competition: Predict a book's genre given its cover image and title.
- Burouj Armgaan
- Mohit Sharma
Find data.zip
at the following link.
- Run
conda env create -f env.yaml
to create a conda env by the nameperk
. - Run
conda activate perk
prior to running any scripts in this repo.
<dataset_dir>
images/images/
comp_test_x.csv
non_comp_test_x.csv
non_comp_test_y.csv
train_x.csv
train_y.csv
- All scripts must be run from the
code
directory. - CNN :
python cnn.py <dataset_dir_path>
- Bidirectional-RNN :
python rnn.py <dataset_dir_path>
- Multimodal :
python comp.py <dataset_dir_path>
Running any of the .py
files will do the following:
- Train the model
- Print out the test accuracy
- Save the model to disk in the format
<model>_<time>.pt
. - Store the test-set predictions in a
.csv
file named:non_comp_test_pred_y.csv
forcnn.py
&rnn.py
.comp_test_y.csv
forcomp.py
.