Skip to content

Commit

Permalink
questions
Browse files Browse the repository at this point in the history
  • Loading branch information
mariainesdff committed Dec 10, 2024
1 parent 2ab7725 commit 6707991
Showing 1 changed file with 42 additions and 51 deletions.
93 changes: 42 additions & 51 deletions DividedPowers/DPAlgebra/Envelope.lean
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def IsDPEnvelope {A : Type u} [CommRing A] {I : Ideal A} (hI : DividedPowers I)
∀ (K : Ideal C) (hK : DividedPowers K)
(_ : J.map (algebraMap B C) ≤ K)
(_ : IsCompatibleWith hI hK (algebraMap A C)),
∃! φ : DPMorphism hJ' hK, φ.toRingHom ψ = algebraMap B C
∃! φ : DPMorphism hJ' hK, φ.toRingHom.comp ψ = algebraMap B C

/-- B-O Universal property from Theorem 3.19, with additional restriction at the end of case 1 -/
def IsWeakDPEnvelope {A : Type u} [CommRing A] {I : Ideal A} (hI : DividedPowers I) {B : Type v}
Expand Down Expand Up @@ -532,7 +532,7 @@ section
variable [Nontrivial B]

-- Universal property claim of Theorem 3.19
theorem dpEnvelope_IsDPEnvelope' [DecidableEq B] [∀ x, Decidable (x ∈ (dpIdeal hI J).carrier)] :
theorem dpEnvelope_IsDPEnvelope [DecidableEq B] [∀ x, Decidable (x ∈ (dpIdeal hI J).carrier)] :
IsDPEnvelope hI J (dpIdeal hI J) (dividedPowers hI J)
(algebraMap B (dpEnvelope hI J)) (sub_ideal_dpIdeal hI J) := by
rw [IsDPEnvelope]
Expand Down Expand Up @@ -564,8 +564,10 @@ theorem dpEnvelope_IsDPEnvelope' [DecidableEq B] [∀ x, Decidable (x ∈ (dpId
simp only [J', Submodule.add_eq_sup, Ideal.map_sup, Ideal.map_map,
← IsScalarTower.algebraMap_eq]
exact le_sup_of_le_right (le_refl _)
-- `φ` restricts to a DP morphism from `dpIdeal hI J` to `K`, because the image of
-- `dpIdeal hI J` is contained in `K`.
/- Q: I am trying to follow "The General Case" section in page 63 of B-O. If I understand
correctly, what they are saying is that the map `φ` above is also a DP morphism from
`dpIdeal hI J` to `K`, because the image of `dpIdeal hI J` is contained in `K`. However I
cannot prove this (see line 609). -/
set ψ : (dividedPowers hI J).DPMorphism hK :=
{ toRingHom := φ.toRingHom
ideal_comp := by
Expand Down Expand Up @@ -604,59 +606,48 @@ theorem dpEnvelope_IsDPEnvelope' [DecidableEq B] [∀ x, Decidable (x ∈ (dpId
apply Ideal.map_mono
intro x hx
simp only [map] at hx
--simp only [mem_augIdeal_iff]
apply Submodule.span_induction hx (p := fun x ↦ x ∈ _)
· intro y hy
simp only [Set.mem_image, SetLike.mem_coe] at hy
obtain ⟨z, hzJ, rfl⟩ := hy
simp only [mem_augIdeal_iff]
simp only [AlgHom.commutes, Algebra.id.map_eq_id, RingHom.id_apply]
-- This isn't right...
sorry
· sorry
· sorry
· sorry
-- Q (follow up from line 567): this seems false, which would suggest that the proof
-- strategy from B-O does not work.
sorry
dpow_comp := fun a ha => by
--have := φ.dpow_comp
obtain ⟨r, s⟩ := hI1
--rw ← hI'_ext,
--rw φ.dpow_comp,
sorry }

use ψ
refine ⟨by rw [← hφ]; rfl, ?_⟩
· intro α hα
simp only
-- Could this be some composition?
set β : (Quotient.dividedPowers (DividedPowerAlgebra.dividedPowers' B ↥(J' I J))
(J12_IsSubDPIdeal hI (sub_ideal_J' I J))).DPMorphism h1 :=
{ toRingHom := α.toRingHom
ideal_comp := by
have hKK1 : K ≤ K1 := sorry
apply le_trans _ hKK1
have := α.ideal_comp
apply le_trans _ this
apply Ideal.map_mono
rw [Ideal.map_le_iff_le_comap]
intros x hx
rw [Ideal.mem_comap]
simp only [augIdeal] at hx
/- simp only [dpIdeal]
convert sub_ideal_dpIdeal hI J
simp only [dpEnvelope] -/
simp only [SubDPIdeal.memCarrier, dpIdeal]
intro α hα
simp only
set β : (Quotient.dividedPowers (DividedPowerAlgebra.dividedPowers' B ↥(J' I J))
(J12_IsSubDPIdeal hI (sub_ideal_J' I J))).DPMorphism h1 :=
{ toRingHom := α.toRingHom
ideal_comp := by
have hKK1 : K ≤ K1 := sorry --easy
apply le_trans _ hKK1
apply le_trans _ α.ideal_comp
apply Ideal.map_mono
intro x hx
simp only [SubDPIdeal.memCarrier, dpIdeal, SubDPIdeal.generatedDpow]
refine Submodule.span_induction' ?_ ?_ ?_ ?_ hx
· intro x hx
simp only [Set.mem_image, SetLike.mem_coe] at hx
obtain ⟨y, hy, rfl⟩ := hx
rw [mem_augIdeal_iff] at hy
-- Q: This does not look right either, is α not the correct map to take?
sorry
dpow_comp := fun a ha => by
obtain ⟨hK', hmap, hint⟩ := hI1
--rw [← hα] at hmap
--simp_rw [← hI'_ext] at hmap
--rw φ.dpow_comp,
sorry }

have hβ : β.toRingHom.comp (algebraMap B (dpEnvelopeOfIncluded hI (J' I J)
(sub_ideal_J' I J))) = (algebraMap B C) := sorry

ext x
simp only [RingHom.toMonoidHom_eq_coe, OneHom.toFun_eq_coe, MonoidHom.toOneHom_coe,
MonoidHom.coe_coe]
rw [← hφ_unique β hβ]
· simp
· intro a _ b _ ha hb
exact Ideal.add_mem _ ha hb
· intro a x _ hx
exact Submodule.smul_mem _ a hx
dpow_comp := fun a ha => by
obtain ⟨hK', hmap, hint⟩ := hI1
--rw [← hα] at hmapc
--simp_rw [← hI'_ext] at hmap
--rw φ.dpow_comp,
sorry }
ext x
simp only [RingHom.toMonoidHom_eq_coe, OneHom.toFun_eq_coe, MonoidHom.toOneHom_coe,
MonoidHom.coe_coe]
rw [← hφ_unique β hα]

0 comments on commit 6707991

Please sign in to comment.