- Install the required python packages
pip install -r requirements.txt
- Run Qdrant vector database using docker
docker pull qdrant/qdrant
docker run -p 6333:6333 qdrant/qdrant
- Encode your data and store them in the Qdrant vector database as embeddings
- Put all your documents/text files in the copilot_knowledge_graph folder
- Run the copilot_vector_db.py script to encode the documents and store them in the Qdrant vector database
python copilot_vector_db.py
- Update the .env file with the Qdrant vector database url exposed by the docker container running locally on you machine, huggingface API token, and your OpenAI key
OPENAI_API_KEY= ADD_API_KEY_HERE
QDRANT_URL=http://localhost:6333
HUGGINGFACEHUB_API_TOKEN= ADD_TOKEN_HERE
- Run the copilot_chat_gradio.py script to generate the response to the user query on a gradio interface
python copilot_chat_gradio.py