Skip to content

Supervised Learning Ensemble for Diagnostic Identification

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

AlineTalhouk/splendid

Repository files navigation

splendid

R-CMD-check Coverage status

Overview

The goal of splendid is to provide a supervised learning pipeline that implements major components of a multiclass classification problem. We guide the user through fitting a classifier, obtaining predictions, and ultimately evaluating performance using metrics and visualizations.

Installation

You can install splendid from github with:

# install.packages("devtools")
devtools::install_github("AlineTalhouk/splendid")

Example

The following example shows how to use the main function of the package, splendid(). A data matrix hgsc contains a subset of gene expression measurements of High Grade Serous Ovarian Carcinoma patients from the Cancer Genome Atlas publicly available datasets. Samples as rows, features as columns. The function below runs the package through the splendid() function. First we extract the reference class labels (by TCGA) from the row names of hgsc. Then we fit the random forest and extreme gradient boosting classifiers to one bootstrapped replicate of the data.

library(splendid)
data(hgsc)
class <- attr(hgsc, "class.true")
sl_result <- splendid(data = hgsc, class = class, n = 1,
                      algorithms = c("rf", "xgboost"), seed_boot = 5)
str(sl_result, max.level = 2)
#> List of 8
#>  $ models       :List of 2
#>   ..$ rf     :List of 1
#>   ..$ xgboost:List of 1
#>  $ preds        :List of 2
#>   ..$ rf     :List of 1
#>   ..$ xgboost:List of 1
#>  $ evals        :List of 2
#>   ..$ rf     :'data.frame':  48 obs. of  1 variable:
#>   .. ..- attr(*, "err_632plus")= num 0.433
#>   ..$ xgboost:'data.frame':  48 obs. of  1 variable:
#>   .. ..- attr(*, "err_632plus")= num 0.858
#>  $ bests        : Named chr [1:2] "rf" "rf"
#>   ..- attr(*, "names")= chr [1:2] "1" "X1"
#>  $ ensemble_algs: chr "rf"
#>  $ ensemble_mods:List of 1
#>   ..$ :List of 18
#>   .. ..- attr(*, "class")= chr "randomForest"
#>  $ seq_mods     : NULL
#>  $ seq_preds    : NULL

About

Supervised Learning Ensemble for Diagnostic Identification

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages