forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
REF/TST: method-specific files for test_append (pandas-dev#30503)
- Loading branch information
1 parent
41eae40
commit e997225
Showing
9 changed files
with
369 additions
and
370 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
import numpy as np | ||
import pytest | ||
|
||
import pandas as pd | ||
from pandas import DataFrame, Series, Timestamp | ||
import pandas.util.testing as tm | ||
|
||
|
||
class TestDataFrameAppend: | ||
def test_append_empty_list(self): | ||
# GH 28769 | ||
df = DataFrame() | ||
result = df.append([]) | ||
expected = df | ||
tm.assert_frame_equal(result, expected) | ||
assert result is not df | ||
|
||
df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) | ||
result = df.append([]) | ||
expected = df | ||
tm.assert_frame_equal(result, expected) | ||
assert result is not df # .append() should return a new object | ||
|
||
def test_append_series_dict(self): | ||
df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) | ||
|
||
series = df.loc[4] | ||
msg = "Indexes have overlapping values" | ||
with pytest.raises(ValueError, match=msg): | ||
df.append(series, verify_integrity=True) | ||
|
||
series.name = None | ||
msg = "Can only append a Series if ignore_index=True" | ||
with pytest.raises(TypeError, match=msg): | ||
df.append(series, verify_integrity=True) | ||
|
||
result = df.append(series[::-1], ignore_index=True) | ||
expected = df.append( | ||
DataFrame({0: series[::-1]}, index=df.columns).T, ignore_index=True | ||
) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
# dict | ||
result = df.append(series.to_dict(), ignore_index=True) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
result = df.append(series[::-1][:3], ignore_index=True) | ||
expected = df.append( | ||
DataFrame({0: series[::-1][:3]}).T, ignore_index=True, sort=True | ||
) | ||
tm.assert_frame_equal(result, expected.loc[:, result.columns]) | ||
|
||
# can append when name set | ||
row = df.loc[4] | ||
row.name = 5 | ||
result = df.append(row) | ||
expected = df.append(df[-1:], ignore_index=True) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_append_list_of_series_dicts(self): | ||
df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) | ||
|
||
dicts = [x.to_dict() for idx, x in df.iterrows()] | ||
|
||
result = df.append(dicts, ignore_index=True) | ||
expected = df.append(df, ignore_index=True) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
# different columns | ||
dicts = [ | ||
{"foo": 1, "bar": 2, "baz": 3, "peekaboo": 4}, | ||
{"foo": 5, "bar": 6, "baz": 7, "peekaboo": 8}, | ||
] | ||
result = df.append(dicts, ignore_index=True, sort=True) | ||
expected = df.append(DataFrame(dicts), ignore_index=True, sort=True) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_append_missing_cols(self): | ||
# GH22252 | ||
# exercise the conditional branch in append method where the data | ||
# to be appended is a list and does not contain all columns that are in | ||
# the target DataFrame | ||
df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) | ||
|
||
dicts = [{"foo": 9}, {"bar": 10}] | ||
with tm.assert_produces_warning(None): | ||
result = df.append(dicts, ignore_index=True, sort=True) | ||
|
||
expected = df.append(DataFrame(dicts), ignore_index=True, sort=True) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_append_empty_dataframe(self): | ||
|
||
# Empty df append empty df | ||
df1 = DataFrame() | ||
df2 = DataFrame() | ||
result = df1.append(df2) | ||
expected = df1.copy() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
# Non-empty df append empty df | ||
df1 = DataFrame(np.random.randn(5, 2)) | ||
df2 = DataFrame() | ||
result = df1.append(df2) | ||
expected = df1.copy() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
# Empty df with columns append empty df | ||
df1 = DataFrame(columns=["bar", "foo"]) | ||
df2 = DataFrame() | ||
result = df1.append(df2) | ||
expected = df1.copy() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
# Non-Empty df with columns append empty df | ||
df1 = DataFrame(np.random.randn(5, 2), columns=["bar", "foo"]) | ||
df2 = DataFrame() | ||
result = df1.append(df2) | ||
expected = df1.copy() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_append_dtypes(self): | ||
|
||
# GH 5754 | ||
# row appends of different dtypes (so need to do by-item) | ||
# can sometimes infer the correct type | ||
|
||
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(5)) | ||
df2 = DataFrame() | ||
result = df1.append(df2) | ||
expected = df1.copy() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) | ||
df2 = DataFrame({"bar": "foo"}, index=range(1, 2)) | ||
result = df1.append(df2) | ||
expected = DataFrame({"bar": [Timestamp("20130101"), "foo"]}) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) | ||
df2 = DataFrame({"bar": np.nan}, index=range(1, 2)) | ||
result = df1.append(df2) | ||
expected = DataFrame( | ||
{"bar": Series([Timestamp("20130101"), np.nan], dtype="M8[ns]")} | ||
) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) | ||
df2 = DataFrame({"bar": np.nan}, index=range(1, 2), dtype=object) | ||
result = df1.append(df2) | ||
expected = DataFrame( | ||
{"bar": Series([Timestamp("20130101"), np.nan], dtype="M8[ns]")} | ||
) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
df1 = DataFrame({"bar": np.nan}, index=range(1)) | ||
df2 = DataFrame({"bar": Timestamp("20130101")}, index=range(1, 2)) | ||
result = df1.append(df2) | ||
expected = DataFrame( | ||
{"bar": Series([np.nan, Timestamp("20130101")], dtype="M8[ns]")} | ||
) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) | ||
df2 = DataFrame({"bar": 1}, index=range(1, 2), dtype=object) | ||
result = df1.append(df2) | ||
expected = DataFrame({"bar": Series([Timestamp("20130101"), 1])}) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
@pytest.mark.parametrize( | ||
"timestamp", ["2019-07-19 07:04:57+0100", "2019-07-19 07:04:57"] | ||
) | ||
def test_append_timestamps_aware_or_naive(self, tz_naive_fixture, timestamp): | ||
# GH 30238 | ||
tz = tz_naive_fixture | ||
df = pd.DataFrame([pd.Timestamp(timestamp, tz=tz)]) | ||
result = df.append(df.iloc[0]).iloc[-1] | ||
expected = pd.Series(pd.Timestamp(timestamp, tz=tz), name=0) | ||
tm.assert_series_equal(result, expected) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.