Skip to content

AbhiDasariNYU/Tensorflow_Basic

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

Tensorflow_Basic

The basic program to understand the Tensorflow

This program show how the neural network works

Normal programming=> Data+Rule->Result

Machine Learning Programming=> Data+Result->Result

the code is explained as follows:

import tensorflow as tf import numpy as np from tensorflow import keras ---------------import statements--------------

model = tf.keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) ---------------neural network structure with one node and one layer and one input----------------

model.compile(optimizer='sgd',loss='mean_squared_error') --------------------------------using gradient descent for optimization and mean square method for loss calculation--------------

xs = np.array([1.0,2.0,3.0,4.0,5.0,6.0]) ys = np.array([2.0,3.0,4.0,5.0,6.0,7.0]) --------------------------giving input x and ouput y in form of y=x+1-------------------------------

model.fit(xs,ys,epochs=5000) --------------fitting data and result into model with 500 iterations of training---------

print(model.predict([7.0])) --------------predicting output for new value-----------------------

About

The basic program to understand the Tensorflow

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages