Skip to content

Visualize, create, and operate on pytrees in the most intuitive way possible.

License

Notifications You must be signed in to change notification settings

ASEM000/pytreeclass

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ› οΈ Installation

pip install pytreeclass

Install development version

pip install git+https://github.com/ASEM000/pytreeclass

πŸ“– Description

pytreeclass is a JAX-compatible class builder to create and operate on stateful JAX PyTrees in a performant and intuitive way, by building on familiar concepts found in numpy, dataclasses, and others.

See documentation and 🍳 Common recipes to check if this library is a good fit for your work. If you find the package useful consider giving it a 🌟.

⏩ Quick Example

import jax
import jax.numpy as jnp
import pytreeclass as tc

@tc.autoinit
class Tree(tc.TreeClass):
    a: float = 1.0
    b: tuple[float, float] = (2.0, 3.0)
    c: jax.Array = jnp.array([4.0, 5.0, 6.0])

    def __call__(self, x):
        return self.a + self.b[0] + self.c + x


tree = Tree()
mask = jax.tree_map(lambda x: x > 5, tree)
tree = tree\
       .at["a"].set(100.0)\
       .at["b"][0].set(10.0)\
       .at[mask].set(100.0)

print(tree)
# Tree(a=100.0, b=(10.0, 3.0), c=[  4.   5. 100.])

print(tc.tree_diagram(tree))
# Tree
# β”œβ”€β”€ .a=100.0
# β”œβ”€β”€ .b:tuple
# β”‚   β”œβ”€β”€ [0]=10.0
# β”‚   └── [1]=3.0
# └── .c=f32[3](ΞΌ=36.33, Οƒ=45.02, ∈[4.00,100.00])

print(tc.tree_summary(tree))
# β”Œβ”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”
# β”‚Name β”‚Type  β”‚Countβ”‚Size  β”‚
# β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€
# β”‚.a   β”‚float β”‚1    β”‚      β”‚
# β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€
# β”‚.b[0]β”‚float β”‚1    β”‚      β”‚
# β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€
# β”‚.b[1]β”‚float β”‚1    β”‚      β”‚
# β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€
# β”‚.c   β”‚f32[3]β”‚3    β”‚12.00Bβ”‚
# β”œβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€
# β”‚Ξ£    β”‚Tree  β”‚6    β”‚12.00Bβ”‚
# β””β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”˜

# ** pass it to jax transformations **
# works with jit, grad, vmap, etc.

@jax.jit
@jax.grad
def sum_tree(tree: Tree, x):
    return sum(tree(x))

print(sum_tree(tree, 1.0))
# Tree(a=3.0, b=(3.0, 0.0), c=[1. 1. 1.])

πŸ“œ Stateful computations

Under jax.jit jax requires states to be explicit, this means that for any class instance; variables needs to be separated from the class and be passed explictly. However when using TreeClass no need to separate the instance variables ; instead the whole instance is passed as a state.

Using the following pattern,Updating state functionally can be achieved under jax.jit

import jax
import pytreeclass as tc

class Counter(tc.TreeClass):
    def __init__(self, calls: int = 0):
        self.calls = calls

    def increment(self):
        self.calls += 1
counter = Counter() # Counter(calls=0)

Here, we define the update function. Since the increment method mutate the internal state, thus we need to use the functional approach to update the state by using .at. To achieve this we can use .at[method_name].__call__(*args,**kwargs), this functional call will return the value of this call and a new model instance with the update state.

@jax.jit
def update(counter):
    value, new_counter = counter.at["increment"]()
    return new_counter

for i in range(10):
    counter = update(counter)

print(counter.calls) # 10

βž• Benchmarks

Benchmark flatten/unflatten compared to Flax and Equinox

Open In Colab

CPUGPU
Benchmark simple training against `flax` and `equinox`

Training simple sequential linear benchmark against flax and equinox

Num of layers Flax/tc time
Open In Colab
Equinox/tc time
Open In Colab
10 1.427 6.671
100 1.1130 2.714

πŸ“™ Acknowledgements