Skip to content

Commit

Permalink
change R code indentation
Browse files Browse the repository at this point in the history
  • Loading branch information
drosofff committed Nov 7, 2024
1 parent 41664be commit 8179f82
Showing 1 changed file with 167 additions and 119 deletions.
286 changes: 167 additions & 119 deletions tools/gsc_filter_cells/filter_cells.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,12 @@
# percentiles or raw values of number of genes detected or
# total aligned reads

options(show.error.messages = FALSE,
error = function() {
cat(geterrmessage(), file = stderr())
q("no", 1, FALSE)
}
options(
show.error.messages = FALSE,
error = function() {
cat(geterrmessage(), file = stderr())
q("no", 1, FALSE)
}
)

loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8")
Expand All @@ -18,203 +19,250 @@ library(ggplot2)

# Arguments
option_list <- list(
make_option(c("-f", "--file"), default = NA, type = "character",
help = "Input file that contains values to filter"),
make_option("--sep", default = "\t", type = "character",
help = "File column separator [default : '%default' ]"),
make_option("--percentile_genes", default = 0, type = "integer",
help = "nth Percentile of the number of genes detected by a cell distribution [default : '%default' ]"),
make_option("--percentile_counts", default = 0, type = "integer",
help = "nth Percentile of the total counts per cell distribution [default : '%default' ]"),
make_option("--absolute_genes", default = 0, type = "integer",
help = "Remove cells that did not express at least this number of genes [default : '%default' ]"),
make_option("--absolute_counts", default = 0, type = "integer",
help = "Number of transcript threshold for cell filtering [default : '%default' ]"),
make_option("--manage_cutoffs", default = "intersect", type = "character",
help = "combine or intersect cutoffs for filtering"),
make_option("--pdfplot", type = "character",
help = "Path to pdf file of the plots"),
make_option("--output", type = "character",
help = "Path to tsv file of filtered cell data"),
make_option("--output_metada", type = "character",
help = "Path to tsv file of filtered cell metadata")
make_option(c("-f", "--file"),
default = NA, type = "character",
help = "Input file that contains values to filter"
),
make_option("--sep",
default = "\t", type = "character",
help = "File column separator [default : '%default' ]"
),
make_option("--percentile_genes",
default = 0, type = "integer",
help = "nth Percentile of the number of genes detected by a cell distribution [default : '%default' ]"
),
make_option("--percentile_counts",
default = 0, type = "integer",
help = "nth Percentile of the total counts per cell distribution [default : '%default' ]"
),
make_option("--absolute_genes",
default = 0, type = "integer",
help = "Remove cells that did not express at least this number of genes [default : '%default' ]"
),
make_option("--absolute_counts",
default = 0, type = "integer",
help = "Number of transcript threshold for cell filtering [default : '%default' ]"
),
make_option("--manage_cutoffs",
default = "intersect", type = "character",
help = "combine or intersect cutoffs for filtering"
),
make_option("--pdfplot",
type = "character",
help = "Path to pdf file of the plots"
),
make_option("--output",
type = "character",
help = "Path to tsv file of filtered cell data"
),
make_option("--output_metada",
type = "character",
help = "Path to tsv file of filtered cell metadata"
)
)
opt <- parse_args(OptionParser(option_list = option_list),
args = commandArgs(trailingOnly = TRUE)
args = commandArgs(trailingOnly = TRUE)
)
if (opt$sep == "tab") {
opt$sep <- "\t"
opt$sep <- "\t"
}
if (opt$sep == "comma") {
opt$sep <- ","
opt$sep <- ","
}
if (opt$sep == "space") {
opt$sep <- " "
opt$sep <- " "
}


## check consistency of filtering options

# if input parameters are not consistent (one or either method, not both), no filtering
if ((opt$percentile_counts > 0) && (opt$absolute_counts > 0)) {
opt$percentile_counts <- 0
opt$percentile_counts <- 0
}

# if input parameters are not consistent (one or either method, not both), no filtering
if ((opt$percentile_genes > 0) && (opt$absolute_genes > 0)) {
opt$percentile_genes <- 0
opt$percentile_genes <- 0
}

# Import datasets
data_counts <- read.delim(
opt$file,
header = TRUE,
stringsAsFactors = FALSE,
sep = opt$sep,
check.names = FALSE,
row.names = 1
opt$file,
header = TRUE,
stringsAsFactors = FALSE,
sep = opt$sep,
check.names = FALSE,
row.names = 1
)

QC_metrics <- data.frame(cell_id = colnames(data_counts),
nGenes = colSums(data_counts != 0), # nGenes is Number of detected genes for each cell
total_counts = colSums(data_counts), # total_counts is Total counts per cell
stringsAsFactors = FALSE)
QC_metrics <- data.frame(
cell_id = colnames(data_counts),
nGenes = colSums(data_counts != 0), # nGenes is Number of detected genes for each cell
total_counts = colSums(data_counts), # total_counts is Total counts per cell
stringsAsFactors = FALSE
)


plot_hist <- function(mydata, variable, title, cutoff) {
mybinwidth <- round(max(mydata[, variable]) * 5 / 100)
mylabel <- paste0("cutoff= ", cutoff)
hist_plot <- ggplot(as.data.frame(mydata[, variable]),
aes(x = mydata[, variable], colour = I("white"))) +
geom_histogram(binwidth = mybinwidth) +
labs(title = title, x = variable, y = "count") +
scale_x_continuous() +
geom_vline(xintercept = cutoff) +
annotate(geom = "text",
x = cutoff + mybinwidth, y = 1,
label = mylabel, color = "white")
plot(hist_plot)
return
mybinwidth <- round(max(mydata[, variable]) * 5 / 100)
mylabel <- paste0("cutoff= ", cutoff)
hist_plot <- ggplot(
as.data.frame(mydata[, variable]),
aes(x = mydata[, variable], colour = I("white"))
) +
geom_histogram(binwidth = mybinwidth) +
labs(title = title, x = variable, y = "count") +
scale_x_continuous() +
geom_vline(xintercept = cutoff) +
annotate(
geom = "text",
x = cutoff + mybinwidth, y = 1,
label = mylabel, color = "white"
)
plot(hist_plot)
return
}

# returns the highest value such as the sum of the ordered values including this highest
# value is lower (below) than the percentile threshold (n)
percentile_cutoff <- function(n, qcmetrics, variable, plot_title, ...) {
p <- n / 100
percentile_threshold <- quantile(qcmetrics[, variable], p)[[1]]
plot_hist(qcmetrics,
variable,
plot_title,
percentile_threshold)
return(percentile_threshold)
p <- n / 100
percentile_threshold <- quantile(qcmetrics[, variable], p)[[1]]
plot_hist(
qcmetrics,
variable,
plot_title,
percentile_threshold
)
return(percentile_threshold)
}

pdf(file = opt$pdfplot)

# Determine thresholds based on percentile

if (opt$percentile_counts > 0) {
counts_threshold <- percentile_cutoff(opt$percentile_counts,
QC_metrics,
"total_counts",
"Histogram of Aligned read counts per cell")
counts_threshold <- percentile_cutoff(
opt$percentile_counts,
QC_metrics,
"total_counts",
"Histogram of Aligned read counts per cell"
)
} else {
counts_threshold <- opt$absolute_counts
plot_hist(QC_metrics,
variable = "total_counts",
title = "Histogram of Total counts per cell",
cutoff = counts_threshold)
counts_threshold <- opt$absolute_counts
plot_hist(QC_metrics,
variable = "total_counts",
title = "Histogram of Total counts per cell",
cutoff = counts_threshold
)
}

if (opt$percentile_genes > 0) {
genes_threshold <- percentile_cutoff(opt$percentile_genes,
QC_metrics,
"nGenes",
"Histogram of Number of detected genes per cell")
genes_threshold <- percentile_cutoff(
opt$percentile_genes,
QC_metrics,
"nGenes",
"Histogram of Number of detected genes per cell"
)
} else {
genes_threshold <- opt$absolute_genes
plot_hist(QC_metrics,
variable = "nGenes",
title = "Histogram of Number of detected genes per cell",
cutoff = genes_threshold)
genes_threshold <- opt$absolute_genes
plot_hist(QC_metrics,
variable = "nGenes",
title = "Histogram of Number of detected genes per cell",
cutoff = genes_threshold
)
}

# Filter out rows below thresholds (genes and read counts)
if (opt$manage_cutoffs == "union") {
QC_metrics$filtered <- (QC_metrics$nGenes < genes_threshold) | (QC_metrics$total_counts < counts_threshold)
QC_metrics$filtered <- (QC_metrics$nGenes < genes_threshold) | (QC_metrics$total_counts < counts_threshold)
} else {
QC_metrics$filtered <- (QC_metrics$nGenes < genes_threshold) & (QC_metrics$total_counts < counts_threshold)
QC_metrics$filtered <- (QC_metrics$nGenes < genes_threshold) & (QC_metrics$total_counts < counts_threshold)
}

## Plot the results

# Determine title from the parameter logics
if (opt$percentile_counts > 0) {
part_one <- paste0("Cells with aligned reads counts below the ",
opt$percentile_counts,
"th percentile of aligned read counts")
part_one <- paste0(
"Cells with aligned reads counts below the ",
opt$percentile_counts,
"th percentile of aligned read counts"
)
} else {
part_one <- paste0("Cells with aligned read counts below ",
opt$absolute_counts)
part_one <- paste0(
"Cells with aligned read counts below ",
opt$absolute_counts
)
}

if (opt$percentile_genes > 0) {
part_two <- paste0("with number of detected genes below the ",
opt$percentile_genes,
"th percentile of detected gene counts")
part_two <- paste0(
"with number of detected genes below the ",
opt$percentile_genes,
"th percentile of detected gene counts"
)
} else {
part_two <- paste0("with number of detected genes below ",
opt$absolute_genes)
part_two <- paste0(
"with number of detected genes below ",
opt$absolute_genes
)
}

if (opt$manage_cutoffs == "intersect") {
conjunction <- " and\n"
conjunction <- " and\n"
} else {
conjunction <- " or\n"
conjunction <- " or\n"
}

# plot with ggplot2
ggplot(QC_metrics, aes(nGenes, total_counts, colour = filtered)) +
geom_point() +
scale_y_log10() +
scale_colour_discrete(name = "",
breaks = c(FALSE, TRUE),
labels = c(paste0("Not filtered (", table(QC_metrics$filtered)[1], " cells)"),
paste0("Filtered (", table(QC_metrics$filtered)[2], " cells)"))
) +
xlab("Detected genes per cell") +
ylab("Aligned reads per cell (log10 scale)") +
geom_vline(xintercept = genes_threshold) +
geom_hline(yintercept = counts_threshold) +
ggtitle(paste0(part_one, conjunction, part_two, "\nwere filtered out")) +
theme(plot.title = element_text(size = 8, face = "bold"))
geom_point() +
scale_y_log10() +
scale_colour_discrete(
name = "",
breaks = c(FALSE, TRUE),
labels = c(
paste0("Not filtered (", table(QC_metrics$filtered)[1], " cells)"),
paste0("Filtered (", table(QC_metrics$filtered)[2], " cells)")
)
) +
xlab("Detected genes per cell") +
ylab("Aligned reads per cell (log10 scale)") +
geom_vline(xintercept = genes_threshold) +
geom_hline(yintercept = counts_threshold) +
ggtitle(paste0(part_one, conjunction, part_two, "\nwere filtered out")) +
theme(plot.title = element_text(size = 8, face = "bold"))

dev.off()

# Retrieve identifier of kept_cells
kept_cells <- QC_metrics$cell_id[!QC_metrics$filtered]

data_counts <- data.frame(Genes = rownames(data_counts[, kept_cells]),
data_counts[, kept_cells],
check.names = FALSE)
data_counts <- data.frame(
Genes = rownames(data_counts[, kept_cells]),
data_counts[, kept_cells],
check.names = FALSE
)

# Save filtered cells
write.table(data_counts,
opt$output,
sep = "\t",
quote = FALSE,
col.names = TRUE,
row.names = FALSE
opt$output,
sep = "\t",
quote = FALSE,
col.names = TRUE,
row.names = FALSE
)

# Add QC metrics of filtered cells to a metadata file
metadata <- QC_metrics

# Save the metadata (QC metrics) file
write.table(metadata,
opt$output_metada,
sep = "\t",
quote = FALSE,
col.names = TRUE,
row.names = FALSE
opt$output_metada,
sep = "\t",
quote = FALSE,
col.names = TRUE,
row.names = FALSE
)

0 comments on commit 8179f82

Please sign in to comment.