-
Notifications
You must be signed in to change notification settings - Fork 270
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ADD: Function to create CFADs (#1492)
* Create cfad.py * Update __init__.py * Create test_cfad.py * Create plot_cfad.py * Update plot_cfad.py * Update plot_feature_detection.py * Update cfad.py * Update test_cfad.py * Update plot_cfad.py * linting updates * linting update * Update to use grid or radar object * corrections * update example * Update test_cfad.py * Update test_cfad.py * Update test_cfad.py * add spaces --------- Co-authored-by: Zach Sherman <[email protected]>
- Loading branch information
1 parent
825b592
commit 8a4fd83
Showing
5 changed files
with
461 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,327 @@ | ||
""" | ||
======================================= | ||
Creating a CFAD diagram | ||
======================================= | ||
This example shows how to create a contoured frequency by altitude (CFAD) diagram | ||
""" | ||
|
||
print(__doc__) | ||
|
||
# Author: Laura Tomkins ([email protected]) | ||
# License: BSD 3 clause | ||
|
||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from open_radar_data import DATASETS | ||
|
||
import pyart | ||
|
||
###################################### | ||
# Description of a CFAD | ||
# ---------- | ||
# A contoured frequency by altitude diagram (CFAD) is essentially a 2D histogram used to depict the vertical | ||
# distribution of a particular variable, such as radar reflectivity. The x-axis represents the frequency of the | ||
# field and the y-axis represents the frequency of the altitude. A key feature that distinguishes a CFAD from a | ||
# regular 2D histogram is that it is normalized by altitude and altitudes where there is insufficient data are | ||
# removed. See Yuter and Houze (1995) for full details of the diagram. | ||
# | ||
# **Interpretation** | ||
# In a CFAD diagram, for a given altitude, the normalized frequency values will sum to a value of 1. When | ||
# interpreting a CFAD diagram, the normalized frequency for a given bin will be the frequency of that value for the | ||
# associated altitude (i.e. each bin can be interpreted as the fraction of data points at each altitude). | ||
# | ||
# **Minimum fraction threshold** | ||
# In a CFAD diagram, altitudes where there is insufficient data are removed. This feature is controlled with the | ||
# `min_frac_thres` value. The default value is 0.1, meaning that altitudes where the number of observations is less | ||
# than one tenth of the maximum number of observations across all altitudes are removed. Increasing the value will | ||
# act to be more aggressive in removing altitudes and decreasing the value will act to include more data. Setting | ||
# this value to zero will include all altitudes with data, but use caution when interpreting CFADs with all data | ||
# available as those altitudes with less data will not be as representative as other altitudes with sufficient data. | ||
###################################### | ||
# Basic example with reflectivity from RHI | ||
# ---------- | ||
# **Example with RHI** | ||
# First, we will show an example from an RHI scan. We will get the reflectivity data and mask outside -15 and 35 dBZ | ||
# to remove any noisy data. For the best results, we recommend cleaning up the field as much as possible (i.e. | ||
# despeckling, filtering, etc.) | ||
|
||
# get test data | ||
filename = pyart.testing.get_test_data("sgpxsaprrhicmacI5.c0.20110524.015604_NC4.nc") | ||
radar = pyart.io.read_cfradial(filename) | ||
|
||
# compute CFAD | ||
# get reflectivity data and mask extremes | ||
# extract first sweep | ||
radar = radar.extract_sweeps([0]) | ||
# get mask array | ||
ref_data = radar.fields["reflectivity_horizontal"]["data"][:] | ||
ref_data_masked = np.ma.masked_outside(ref_data, -15, 35) | ||
field_mask = ref_data_masked.mask | ||
|
||
# get CFAD | ||
freq_norm, height_edges, field_edges = pyart.retrieve.create_cfad( | ||
radar, | ||
field_bins=np.linspace(-15, 35, 100), | ||
altitude_bins=np.linspace(0, 15000, 50), | ||
field="reflectivity_horizontal", | ||
field_mask=field_mask, | ||
min_frac_thres=0.1, | ||
) | ||
|
||
# plot CFAD | ||
# mask frequency values less than zero | ||
freq_norm_masked = np.ma.masked_less_equal(freq_norm, 0) | ||
# plot CFAD | ||
plt.figure() | ||
ax = plt.axes() | ||
cfad_pm = ax.pcolormesh( | ||
field_edges, height_edges / 1000, freq_norm_masked, cmap="plasma", vmin=0, vmax=0.10 | ||
) | ||
plt.colorbar(cfad_pm) | ||
ax.set_xlabel("Reflectivity [dBZ]") | ||
ax.set_ylabel("Height [km]") | ||
ax.grid(ls="--", color="gray", lw=0.5, alpha=0.7) | ||
plt.show() | ||
|
||
# plot RHI data | ||
display = pyart.graph.RadarDisplay(radar) | ||
|
||
plt.figure(figsize=[12, 3]) | ||
ax = plt.axes() | ||
plt.tight_layout() | ||
display.plot( | ||
"reflectivity_horizontal", | ||
0, | ||
vmin=-15, | ||
vmax=35, | ||
mask_outside=True, | ||
cmap="magma_r", | ||
ax=ax, | ||
) | ||
display.set_limits(ylim=[0, 15], ax=ax) | ||
ax.set_aspect("equal") | ||
plt.show() | ||
|
||
###################################### | ||
# We can see a general increase in reflectivity values from the echo top to around 8km. The maximum frequency value in | ||
# each altitude row represents the mode of the reflectivity distribution which we can see also increases from echo | ||
# top to 8km. Below 8km the distribution of reflectivity values widens, likely associated with some of the noise in | ||
# the RHI. | ||
|
||
# Minimum fraction threshold example | ||
# ---------- | ||
# Previously, we used the default `min_frac_thres` of 0.1. Next, we will increase the threshold and set the threshold | ||
# to 0 (not recommended) so show how the CFAD changes. | ||
|
||
# Let's see the effect of changing the minimum fraction threshold: | ||
freq_norm2, height_edges, field_edges = pyart.retrieve.create_cfad( | ||
radar, | ||
field_bins=np.linspace(-15, 35, 100), | ||
altitude_bins=np.linspace(0, 15000, 50), | ||
field="reflectivity_horizontal", | ||
field_mask=field_mask, | ||
min_frac_thres=0.2, | ||
) | ||
freq_norm0, height_edges, field_edges = pyart.retrieve.create_cfad( | ||
radar, | ||
field_bins=np.linspace(-15, 35, 100), | ||
altitude_bins=np.linspace(0, 15000, 50), | ||
field="reflectivity_horizontal", | ||
field_mask=field_mask, | ||
min_frac_thres=0, | ||
) | ||
|
||
# plot CFAD | ||
# mask zero values | ||
freq_norm2_masked = np.ma.masked_less_equal(freq_norm2, 0) | ||
freq_norm0_masked = np.ma.masked_less_equal(freq_norm0, 0) | ||
# plot | ||
plt.figure(figsize=(12, 3)) | ||
ax1 = plt.subplot(1, 3, 3) | ||
cfad_pm = ax1.pcolormesh( | ||
field_edges, | ||
height_edges / 1000, | ||
freq_norm2_masked, | ||
cmap="plasma", | ||
vmin=0, | ||
vmax=0.10, | ||
) | ||
plt.colorbar(cfad_pm, ax=ax1) | ||
ax1.set_xlabel("Reflectivity [dBZ]") | ||
ax1.grid(ls="--", color="gray", lw=0.5, alpha=0.7) | ||
ax1.set_title("min_frac_thres = 0.2") | ||
|
||
ax2 = plt.subplot(1, 3, 2) | ||
cfad_pm = ax2.pcolormesh( | ||
field_edges, | ||
height_edges / 1000, | ||
freq_norm_masked, | ||
cmap="plasma", | ||
vmin=0, | ||
vmax=0.10, | ||
) | ||
plt.colorbar(cfad_pm, ax=ax2) | ||
ax2.set_xlabel("Reflectivity [dBZ]") | ||
ax2.grid(ls="--", color="gray", lw=0.5, alpha=0.7) | ||
ax2.set_title("min_frac_thres = 0.1") | ||
|
||
ax3 = plt.subplot(1, 3, 1) | ||
cfad_pm = ax3.pcolormesh( | ||
field_edges, | ||
height_edges / 1000, | ||
freq_norm0_masked, | ||
cmap="plasma", | ||
vmin=0, | ||
vmax=0.10, | ||
) | ||
plt.colorbar(cfad_pm, ax=ax3) | ||
ax3.set_xlabel("Reflectivity [dBZ]") | ||
ax3.set_ylabel("Height [km]") | ||
ax3.grid(ls="--", color="gray", lw=0.5, alpha=0.7) | ||
ax3.set_title("min_frac_thres = 0") | ||
plt.show() | ||
|
||
###################################### | ||
# Setting the `min_frac_thres` to 0 (left panel) shows all data, even near the top of the chart (14km) where there is | ||
# limited echo. Setting the `min_frac_thres` higher to 0.2 (right panel) removed altitudes between 1 and 5 km where | ||
# there is less echo than between 6 and 12km where there is a consistent swath of reflectivity throughout the entire | ||
# cross section. | ||
# | ||
# | ||
# Velocity example | ||
# ---------- | ||
# Next, we will show a CFAD for the doppler velocity from the above example. First, we have to dealias the velocity. | ||
|
||
# create a gatefilter | ||
gatefilter = pyart.filters.GateFilter(radar) | ||
gatefilter.exclude_invalid("reflectivity_horizontal") | ||
gatefilter.exclude_outside("reflectivity_horizontal", -15, 30) | ||
gatefilter.exclude_invalid("mean_doppler_velocity") | ||
|
||
# dealias velocity | ||
velocity_dealias = pyart.correct.dealias_region_based( | ||
radar, | ||
gatefilter=gatefilter, | ||
vel_field="mean_doppler_velocity", | ||
nyquist_vel=13, | ||
) | ||
radar.add_field("corrected_velocity", velocity_dealias) | ||
|
||
# plot RHI data | ||
display = pyart.graph.RadarDisplay(radar) | ||
|
||
plt.figure(figsize=[12, 3]) | ||
ax = plt.axes() | ||
plt.tight_layout() | ||
display.plot( | ||
"corrected_velocity", | ||
0, | ||
vmin=-20, | ||
vmax=20, | ||
mask_outside=True, | ||
cmap="RdBu_r", | ||
ax=ax, | ||
) | ||
display.set_limits(ylim=[0, 15], ax=ax) | ||
ax.set_aspect("equal") | ||
plt.show() | ||
|
||
freq_norm, height_edges, field_edges = pyart.retrieve.create_cfad( | ||
radar, | ||
field_bins=np.linspace(-30, 30, 50), | ||
altitude_bins=np.linspace(0, 15000, 50), | ||
field="corrected_velocity", | ||
field_mask=field_mask, | ||
min_frac_thres=0.2, | ||
) | ||
|
||
# plot CFAD | ||
# mask zero values | ||
freq_norm_masked = np.ma.masked_less_equal(freq_norm, 0) | ||
|
||
# plot | ||
plt.figure() | ||
ax = plt.axes() | ||
cfad_pm = ax.pcolormesh( | ||
field_edges, | ||
height_edges / 1000, | ||
freq_norm_masked, | ||
cmap="plasma", | ||
vmin=0, | ||
vmax=0.20, | ||
) | ||
plt.colorbar(cfad_pm) | ||
ax.set_xlabel("Velocity [m s$^{-1}$]") | ||
ax.set_ylabel("Height [km]") | ||
ax.grid(ls="--", color="gray", lw=0.5, alpha=0.7) | ||
plt.show() | ||
|
||
###################################### | ||
# The velocity CFAD is very different from the reflectivity CFAD. In most altitudes, there is more of a bimodal | ||
# pattern associated with the changing sign of the velocity values on either side of the radar. In general, | ||
# the distribution of velocity values is consistently wide throughout the profile compared to the reflectivity CFAD. | ||
# | ||
# Validation | ||
# ---------- | ||
# Finally, we wanted to compare this function with the original method, so here we reproduce Fig. 2c from Yuter and | ||
# Houze (1995) to demonstrate that it works the same. Instead of using the `pcolormesh` function, we are using | ||
# contour lines. | ||
|
||
|
||
# get test data | ||
filename = DATASETS.fetch("ddop.910815.213931.cdf") | ||
grid = pyart.io.read_grid(filename) | ||
|
||
# make corrections to altitude field | ||
altitude_data = grid.point_z["data"] | ||
grid.point_z["data"] = (altitude_data - 800) / 1000 | ||
|
||
# get fields to create a mask | ||
field_data = grid.fields["maxdz"]["data"][:] | ||
vvel_data = grid.fields["w_wind"]["data"][:] | ||
vvel_masked = np.ma.masked_invalid(vvel_data) | ||
field_data_masked = np.ma.masked_less_equal(field_data, -15) | ||
field_data_masked = np.ma.masked_where(vvel_masked.mask, field_data_masked) | ||
|
||
# define histogram bins | ||
field_bins = np.arange(-20, 65, 5) | ||
altitude_bins = np.arange(-0.2, 18.5, 0.4) | ||
|
||
freq_norm, height_edges, field_edges = pyart.retrieve.create_cfad( | ||
grid, | ||
field_bins=field_bins, | ||
altitude_bins=altitude_bins, | ||
field="maxdz", | ||
field_mask=field_data_masked.mask, | ||
min_frac_thres=0.1, | ||
) | ||
|
||
# plot CFAD with contour plot | ||
freq_norm_masked = np.ma.masked_less_equal(freq_norm, 0) | ||
h, f = np.meshgrid(height_edges, field_edges) | ||
|
||
plt.figure(figsize=(6, 3)) | ||
ax = plt.axes() | ||
cont = ax.contour( | ||
f[:-1, :-1] + 2.5, | ||
h[:-1, :-1] + 0.2, | ||
freq_norm.T, | ||
levels=np.arange(0.05, 0.3, 0.05), | ||
colors="black", | ||
) | ||
ax.set_yticks([0, 5, 10, 15]) | ||
ax.set_xticks([-10, 0, 10, 20, 30, 40, 50]) | ||
ax.set_xlim([-12, 58]) | ||
ax.set_ylim([-0.5, 16]) | ||
ax.set_ylabel("Height [km]") | ||
ax.set_xlabel("Reflectivity [dBZ]") | ||
ax.axhline(8, ls="--", lw=0.75, color="black") | ||
ax.set_title("Yuter and Houze (1995) Fig. 2c") | ||
plt.show() | ||
|
||
# References | ||
# ---------- | ||
# Yuter, S. E., and R. A. Houze, 1995: Three-Dimensional Kinematic and Microphysical Evolution of Florida | ||
# Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. | ||
# Mon. Wea. Rev. 123, 1941-1963. https://doi.org/10.1175/1520-0493(1995)123%3C1941:TDKAME%3E2.0.CO;2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.