A minimal PyTorch implementation of YOLOv4.
-
Paper Yolo v4: https://arxiv.org/abs/2004.10934
-
Source code:https://github.com/AlexeyAB/darknet
-
More details: http://pjreddie.com/darknet/yolo/
-
Inference
-
Train
- Mocaic
- baidu(https://pan.baidu.com/s/1dAGEW8cm-dqK14TbhhVetA Extraction code:dm5b)
- google(https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT)
- download model weight https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT
python demo.py cfgfile weightfile imgfile
- Convolution weight reshape
- Mish activation
- route number > 2
- Maxpooling
- yololayer
Reference:
- https://github.com/eriklindernoren/PyTorch-YOLOv3
- https://github.com/marvis/pytorch-caffe-darknet-convert
- https://github.com/marvis/pytorch-yolo3
@article{yolov4,
title={YOLOv4: YOLOv4: Optimal Speed and Accuracy of Object Detection},
author={Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao},
journal = {arXiv},
year={2020}
}