Skip to content

Sistema de generación automático de contenido para diversos medios y audiencias basado en LLMs

Notifications You must be signed in to change notification settings

AI-School-F5-P3/LLM_AK_ContentGenerator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

📱 Digital Content Generator

A powerful content generation system that creates platform-specific content using AI for blogs, social media, and professional networks.

🌟 Features

Essential Level

  • Multi-platform content generation (Blog, Twitter, LinkedIn, Instagram)
  • Custom tone and audience targeting
  • User-friendly web interface
  • Downloadable content in text format
  • Real-time content preview

Medium Level

  • Docker containerization
  • Multiple LLM support (OpenAI, Mistral)
  • AI-generated images integration
  • Company profile management
  • Enhanced content personalization

🛠️ Technologies Used

  • Python 3.9+
  • Streamlit
  • LangChain
  • OpenAI API
  • Stability AI
  • Docker

📋 Prerequisites

  • Python 3.9 or higher
  • Docker (for containerized deployment)
  • OpenAI API key
  • Stability AI API key (for image generation)

🚀 Quick Start

Local Installation

  1. Clone the repository:
git clone https://github.com/yourusername/digital-content-generator.git
cd digital-content-generator
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Create a .env file in the root directory:
OPENAI_API_KEY=your_openai_api_key
STABILITY_API_KEY=your_stability_api_key
  1. Run the application:
streamlit run src/app.py

Docker Installation

  1. Build the Docker image:
docker build -t content-generator .
  1. Run the container:
docker run -p 8501:8501 --env-file .env content-generator

💻 Usage

  1. Access the application at http://localhost:8501
  2. Select your target platform (Blog, Twitter, LinkedIn, or Instagram)
  3. Enter your topic, target audience, and desired tone
  4. Click "Generate Content" to create your content
  5. Download or copy the generated content

📁 Project Structure

project_content/
├── src/
│   ├── generators/
│   │   ├── __init__.py
│   │   ├── content_generator.py
│   │   ├── prompt_manager.py
│   │   ├── image_generator.py
│   │   └── llm_manager.py
│   ├── utils/
│   │   ├── __init__.py
│   │   └── constants.py
│   └── app.py
├── .env
├── Dockerfile
├── requirements.txt
└── README.md

⚙️ Configuration

Environment Variables

  • OPENAI_API_KEY: Your OpenAI API key
  • STABILITY_API_KEY: Your Stability AI API key
  • PORT: Port for the Streamlit application (default: 8501)

Supported Platforms

  • Blog posts
  • Twitter/X threads
  • LinkedIn articles
  • Instagram posts

🤝 Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • OpenAI for providing the GPT models
  • Stability AI for image generation capabilities
  • LangChain for the LLM framework
  • Streamlit for the web interface framework

📧 Contact

Your Name - [email protected] Project Link: https://github.com/yourusername/digital-content-generator

🐛 Troubleshooting

Common Issues

  1. API Key Issues

    • Ensure all API keys are correctly set in the .env file
    • Check API key permissions and quotas
  2. Docker Issues

    • Ensure Docker daemon is running
    • Check port availability
    • Verify environment variables are properly passed
  3. Content Generation Issues

    • Check internet connectivity
    • Verify API quotas haven't been exceeded
    • Ensure input parameters are properly formatted

About

Sistema de generación automático de contenido para diversos medios y audiencias basado en LLMs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published