Skip to content
forked from rreybeyb/MoAIMS

Efficient software for detection of enriched regions of MeRIP-Seq

Notifications You must be signed in to change notification settings

ADelgadoT/MoAIMS

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MoAIMS

MoAIMS is an efficient software for detection of enriched regions of MeRIP-Seq. MoAIMS can also provide an intuitive indicator of treatment effect for the treatment MeRIP-Seq data.

Installation

  • Implemented language: R
  • Version: 1.0
  • Dependends: MASS,mgcv,ggplot2,dplyr,GenomicRanges,GenomicAlignments,GenomicFeatures,rtracklayer,Rsubread,mosaics
#install.packages("devtools")
library(devtools)
install_github("rreybeyb/MoAIMS/codes")

Example

  • A simple run(test data provided in moaims_extdata)

    • Required inputs
      • sample_info_file: A sample sheet of sample information. Please see the required format in example/sample_sheet_exampe.tsv
      • gtf_file: Genome annotation file in sorted GTF format.
      • strand_specifc: Sequencing strand protocol. 0 for unstranded, 1 for fr-first, 2 for fr-second.
      • is_paired: Paired or not. TRUE or FALSE
    > moaims(sample_info_file = /absolute/path/to/sample_info_file, gtf_file =/absolute/path/to/gtf_file,
      strand_specific = 1, is_paired = F, proj_name='test')
    • Primary output(See example/output/test)
      • Enriched regions in BED12 format(sig_*.bed). Definition of some specific columns are:

        1. 5th: the highest bin count of merged regions

        2. 13th: the highest fold change of merged regions

        3. 14th: the highest -log10(pvalue) of merged regions

      • Goodness of Fitting plot(GOF_*.png)

      • A summary table of models(fit_res_*.tsv)

  • Need to adjust the model

    • Required inputs
      • bin_info_obj: Object of class binInfo, imported using method readBinInfo.
      • bin_count_obj:  Object of class binCount, imported using method readBinCount.
      • sample_id: Sample name.
    • Output(See example/output/test/adj)
    #bin_info_*.tsv and bin_count_*.tsv are generated by the main function 'moaims' when setting output_intmd=T(default)
    > bin_info_obj=readBinInfo(in_fn = /absolute/path/to/bin_info_*.tsv)
    > bin_count_obj=readBinCount(in_fn = /absolute/path/to/bin_count_*.tsv)
    > adjFit(bin_info_obj,bin_count_obj,sample_id='test',proj_name='adj')

Reference

  • Kuan, P.F. et al. A Statistical Framework for the Analysis of ChIP-Seq Data. J Am Stat Assoc 106(495), 891–903 (2011)
  • Bao, Y. et al. Accounting for immunoprecipitation efficiencies in the statistical analysis of ChIP-seq data. BMC Bioinformatics 14, 169 (2013)

About

Efficient software for detection of enriched regions of MeRIP-Seq

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%