-
Notifications
You must be signed in to change notification settings - Fork 219
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #569 from CompRhys/cleanup-zbl
Clean up unused Polynomial Cutoff Class from ZBLBasis, remove r_max argument.
- Loading branch information
Showing
3 changed files
with
128 additions
and
38 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
import pytest | ||
import torch | ||
from mace.modules.radial import ZBLBasis, AgnesiTransform | ||
|
||
@pytest.fixture | ||
def zbl_basis(): | ||
return ZBLBasis(p=6, trainable=False) | ||
|
||
def test_zbl_basis_initialization(zbl_basis): | ||
assert zbl_basis.p == torch.tensor(6.0) | ||
assert torch.allclose(zbl_basis.c, torch.tensor([0.1818, 0.5099, 0.2802, 0.02817])) | ||
|
||
assert zbl_basis.a_exp == torch.tensor(0.300) | ||
assert zbl_basis.a_prefactor == torch.tensor(0.4543) | ||
assert not zbl_basis.a_exp.requires_grad | ||
assert not zbl_basis.a_prefactor.requires_grad | ||
|
||
def test_trainable_zbl_basis_initialization(zbl_basis): | ||
zbl_basis = ZBLBasis(p=6, trainable=True) | ||
assert zbl_basis.p == torch.tensor(6.0) | ||
assert torch.allclose(zbl_basis.c, torch.tensor([0.1818, 0.5099, 0.2802, 0.02817])) | ||
|
||
assert zbl_basis.a_exp == torch.tensor(0.300) | ||
assert zbl_basis.a_prefactor == torch.tensor(0.4543) | ||
assert zbl_basis.a_exp.requires_grad | ||
assert zbl_basis.a_prefactor.requires_grad | ||
|
||
def test_forward(zbl_basis): | ||
x = torch.tensor([1.0, 1.0, 2.0]).unsqueeze(-1) # [n_edges] | ||
node_attrs = torch.tensor([[1, 0], [0, 1]]) # [n_nodes, n_node_features] - one_hot encoding of atomic numbers | ||
edge_index = torch.tensor([[0, 1, 1], [1, 0, 1]]) # [2, n_edges] | ||
atomic_numbers = torch.tensor([1, 6]) # [n_nodes] | ||
output = zbl_basis(x, node_attrs, edge_index, atomic_numbers) | ||
|
||
assert output.shape == torch.Size([node_attrs.shape[0]]) | ||
assert torch.is_tensor(output) | ||
assert torch.allclose( | ||
output, | ||
torch.tensor([0.0031, 0.0031], dtype=torch.get_default_dtype()), | ||
rtol=1e-2 | ||
) | ||
|
||
@pytest.fixture | ||
def agnesi(): | ||
return AgnesiTransform(trainable=False) | ||
|
||
def test_agnesi_transform_initialization(agnesi: AgnesiTransform): | ||
assert agnesi.q.item() == pytest.approx(0.9183, rel=1e-4) | ||
assert agnesi.p.item() == pytest.approx(4.5791, rel=1e-4) | ||
assert agnesi.a.item() == pytest.approx(1.0805, rel=1e-4) | ||
assert not agnesi.a.requires_grad | ||
assert not agnesi.q.requires_grad | ||
assert not agnesi.p.requires_grad | ||
|
||
def test_trainable_agnesi_transform_initialization(): | ||
agnesi = AgnesiTransform(trainable=True) | ||
|
||
assert agnesi.q.item() == pytest.approx(0.9183, rel=1e-4) | ||
assert agnesi.p.item() == pytest.approx(4.5791, rel=1e-4) | ||
assert agnesi.a.item() == pytest.approx(1.0805, rel=1e-4) | ||
assert agnesi.a.requires_grad | ||
assert agnesi.q.requires_grad | ||
assert agnesi.p.requires_grad | ||
|
||
def test_agnesi_transform_forward(): | ||
agnesi = AgnesiTransform() | ||
x = torch.tensor([1.0, 2.0, 3.0], dtype=torch.get_default_dtype()).unsqueeze(-1) | ||
node_attrs = torch.tensor([[0, 1], [1, 0], [0, 1]], dtype=torch.get_default_dtype()) | ||
edge_index = torch.tensor([[0, 1, 2], [1, 2, 0]]) | ||
atomic_numbers = torch.tensor([1, 6, 8]) | ||
output = agnesi(x, node_attrs, edge_index, atomic_numbers) | ||
assert output.shape == x.shape | ||
assert torch.is_tensor(output) | ||
assert torch.allclose( | ||
output, | ||
torch.tensor( | ||
[0.3646, 0.2175, 0.2089], dtype=torch.get_default_dtype() | ||
).unsqueeze(-1), | ||
rtol=1e-2 | ||
) | ||
|
||
if __name__ == "__main__": | ||
pytest.main([__file__]) |