Skip to content

Latest commit

 

History

History
12 lines (10 loc) · 502 Bytes

README.md

File metadata and controls

12 lines (10 loc) · 502 Bytes

CauSTG 基于 Graph WaveNet for Deep Spatial-Temporal Graph Modeling 完成

Train Commands

  1. 基于划分数据训练k个模型
  2. 对每个模型的参数做MinPooling,得到新的模型参数
  3. 对新的模型参数做微调
sh train_env.sh

The implementation of "Maintaining the Status Qua: Capturing Invariant Relations for OOD Spatiotemporal Learning" accepted by SIGKDD conference 2023. This case is implemented on Metr-LA. Please unzip the file data.zip and pycache.zip.