-
Notifications
You must be signed in to change notification settings - Fork 7
/
train_superline3d.py
500 lines (414 loc) · 20 KB
/
train_superline3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import argparse
import math
import h5py
import numpy as np
import tensorflow as tf
from tensorflow.python.client import device_lib
import os
import sys
from os.path import join
from collections import OrderedDict
from liegroups.numpy import SO3
def load_h5_files(h5_path):
files = sorted(os.listdir(h5_path))
data_batchlist, label_batchlist, mask_batchlist = [], [], []
for f in files[:1]:
file = h5py.File(os.path.join(h5_path, f), 'r')
data = file["data"][:]
label = file["label"][:]
mask = file["mask"][:]
data_batchlist.append(data)
label_batchlist.append(label)
mask_batchlist.append(mask)
# data_batches = np.asarray(data_batchlist)
# seg_batches = np.asarray(label_batchlist)
# mask_batches = np.asarray(mask_batchlist)
data_batches = np.concatenate(data_batchlist, 0)
seg_batches = np.concatenate(label_batchlist, 0)
mask_batches = np.concatenate(mask_batchlist, 0)
return data_batches, seg_batches, mask_batches
def load_h5_poses(h5_path):
files = sorted(os.listdir(h5_path))
data_batchlist = []
for f in files:
file = h5py.File(os.path.join(h5_path, f), 'r')
data = file["poses"][:]
data_batchlist.append(data)
data_batches = np.concatenate(data_batchlist, 0)
return data_batches
def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
return ['/'+x.name[-5:] for x in local_device_protos if x.device_type == 'GPU']
class opt:
display_id = 700
display_winsize = 256
name = 'vis'
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(BASE_DIR)
sys.path.append(ROOT_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
# import provider
import tf_util
from model import *
# print(os.environ.get('HYPER_PARAMETERS'))
parser = argparse.ArgumentParser()
parser.add_argument('--num_gpu', type=int, default=2, help='the number of GPUs to use [default: 1]')
parser.add_argument('--vis', type=bool, default=True, help='enable visualization [default: False]')
parser.add_argument('--log_dir', default='./summary/', help='Log dir [default: log]')
parser.add_argument('--model_dir', default='./model/', help='model dir [default: /model/]')
parser.add_argument('--stride', type=int, default=1, help='stride in knn [default: 2]')
parser.add_argument('--trans_noise', type=int, default=20, help='translation noise [default: 10]')
parser.add_argument('--knn', type=int, default=20, help='k in knn [default: 20]')
parser.add_argument('--num_point', type=int, default=15000, help='Point number [default: 4096]')
parser.add_argument('--max_epoch', type=int, default=1000, help='Epoch to run [default: 50]')
parser.add_argument('--batch_size', type=int, default=2, help='4 12 10 Batch Size during training for each GPU [default: 24 14]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=40000, help='Decay step for lr decay [default: 300000]')
parser.add_argument('--decay_rate', type=float, default=0.5, help='Decay rate for lr decay [default: 0.5]')
parser.add_argument('--test_area', type=int, default=6, help='Which area to use for test, option: 1-6 [default: 6]')
# parser.add_argument('--load_folder', type=str, default='/public/home/zxr/dataset/TriFaceOneCornerRotLine5k_voxel_so3/', help='dataset folder')
parser.add_argument('--load_folder', type=str, default='/home/miyun/dataset4t/dataset2/kitti_reg_diff35/', help='dataset folder')
# train_args = os.environ.get('HYPER_PARAMETERS').split(' ')
FLAGS = parser.parse_args()
print(FLAGS)
# FLAGS = parser.parse_args()
gpu_name = get_available_gpus()
print(gpu_name)
NUM_GPU = len(gpu_name)
TOWER_NAME = 'tower'
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
VIS = FLAGS.vis
STRIDE = FLAGS.stride
TRANS_NOISE = FLAGS.trans_noise
KNN = FLAGS.knn
print('STRIDE: ', STRIDE)
print('TRANS_NOISE: ', TRANS_NOISE)
load_folder = FLAGS.load_folder
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp model.py %s' % (LOG_DIR))
os.system('cp train_superline3d.py %s' % (LOG_DIR))
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
MAX_NUM_POINT = NUM_POINT
NUM_CLASSES = 2
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
if VIS:
from visualizer import Visualizer
visualizer = Visualizer(opt)
class_name = sorted(os.listdir(load_folder))
r_train_data0, r_train_label0, r_train_mask0 = load_h5_files(join(load_folder, 'r_train_h5'))
l_train_data0, l_train_label0, l_train_mask0 = load_h5_files(join(load_folder, 'l_train_h5'))
r_train_data0, r_train_label0, r_train_mask0 = r_train_data0[:100], r_train_label0[:100], r_train_mask0[:100]
l_train_data0, l_train_label0, l_train_mask0 = l_train_data0[:100], l_train_label0[:100], l_train_mask0[:100]
# # class weight
num_per_class = np.array([40,1])
weight = num_per_class / float(sum(num_per_class))
ce_label_weight = 1 / (weight + 0.0001)
class_weight = np.expand_dims(ce_label_weight, axis=0)
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.000001) # CLIP THE LEARNING RATE!!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def average_gradients(tower_grads):
"""Calculate average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been
averaged across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def build_pc_node_keypoint_visual(pc_np, seg_gt, seg_pred, kp_gt=None, kp_pred=None, keypoint_other_np=None, kp_other_gt=None, sigmas_np=None, sigmas_other_np=None):
pc_color_np = np.repeat(np.expand_dims(np.array([255, 255, 255], dtype=np.int64), axis=0),
pc_np.shape[0],
axis=0) # 1x3 -> Nx3
seg_gt_color = np.repeat(np.expand_dims(np.array([0, 0, 255], dtype=np.int64), axis=0),
seg_gt.shape[0],
axis=0) # 1x3 -> Mx3
seg_pred_color = np.repeat(np.expand_dims(np.array([0, 255, 0], dtype=np.int64), axis=0),
seg_pred.shape[0],
axis=0) # 1x3 -> Mx3
if kp_pred is not None:
keypoint_color_np = np.repeat(np.expand_dims(np.array([125, 0, 0], dtype=np.int64), axis=0),
kp_pred.shape[0],
axis=0) # 1x3 -> Kx3
# # consider the sigma
# if sigmas_np is not None:
# sigmas_normalized_np = (1.0 / sigmas_np) / np.max(1.0 / sigmas_np) # K
# keypoint_color_np = keypoint_color_np * np.expand_dims(sigmas_normalized_np, axis=1) # Kx3
# keypoint_color_np = keypoint_color_np.astype(np.int32)
if keypoint_other_np is not None:
keypoint_other_color_np = np.repeat(np.expand_dims(np.array([0, 0, 255], dtype=np.int64), axis=0),
keypoint_other_np.shape[0],
axis=0) # 1x3 -> Kx3
# consider the sigma
if sigmas_other_np is not None:
sigmas_other_normalized_np = (
1.0 / sigmas_other_np) / np.max(1.0 / sigmas_other_np) # K
keypoint_other_color_np = keypoint_other_color_np * np.expand_dims(sigmas_other_normalized_np,
axis=1) # Kx3
keypoint_other_color_np = keypoint_other_color_np.astype(
np.int32)
if kp_gt is not None:
gt_color_np = np.repeat(np.expand_dims(np.array([255, 0, 0], dtype=np.int64), axis=0),
kp_gt.shape[0],
axis=0) # 1x3 -> Kx3
pc_vis_np = np.concatenate((pc_np, seg_gt, seg_pred), axis=0)
pc_vis_color_np = np.concatenate(
(pc_color_np, seg_gt_color, seg_pred_color), axis=0)
if kp_pred is not None:
pc_vis_np = np.concatenate((pc_vis_np, kp_pred), axis=0)
pc_vis_color_np = np.concatenate(
(pc_vis_color_np, keypoint_color_np), axis=0)
if keypoint_other_np is not None:
pc_vis_np = np.concatenate((pc_vis_np, keypoint_other_np), axis=0)
pc_vis_color_np = np.concatenate(
(pc_vis_color_np, keypoint_other_color_np), axis=0)
if kp_gt is not None:
pc_vis_np = np.concatenate((pc_vis_np, kp_gt), axis=0)
pc_vis_color_np = np.concatenate(
(pc_vis_color_np, gt_color_np), axis=0)
return pc_vis_np, pc_vis_color_np
def train():
with tf.Graph().as_default(), tf.device('/cpu:0'):
batch = tf.Variable(0, trainable=False)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
trainer = tf.train.AdamOptimizer(learning_rate)
num_batches = 2*r_train_data0.shape[0] // (NUM_GPU * BATCH_SIZE)
loss_weights = tf.train.piecewise_constant(batch, [40*num_batches, 60*num_batches],[[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]])
pred_weights = tf.train.piecewise_constant(batch, [60*num_batches],[[0.0, 1.0], [0.0, 1.0]])
desp_loss_weights = tf.train.piecewise_constant(batch, [1*num_batches, 4*num_batches],[[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]])
tower_grads = []
pointclouds_phs = []
labels_phs = []
is_training_phs =[]
sparse_mask_phs = []
with tf.variable_scope(tf.get_variable_scope()):
for i in range(NUM_GPU):
# i += 1
# with tf.device('/gpu:%d' % i):
with tf.device(gpu_name[i]):
with tf.name_scope('%s_%d' % (TOWER_NAME, i)) as scope:
pointclouds_pl, labels_pl = placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
# sparse_mask_pl = tf.sparse_placeholder(tf.float32)
sparse_mask_pl = tf.placeholder(tf.int32, shape=(BATCH_SIZE, NUM_POINT))
pointclouds_phs.append(pointclouds_pl)
labels_phs.append(labels_pl)
is_training_phs.append(is_training_pl)
sparse_mask_phs.append(sparse_mask_pl)
pred, desp = get_superline3d_model(pointclouds_phs[-1], is_training_phs[-1], KNN, STRIDE, bn_decay=bn_decay)
# pred= get_model(pointclouds_phs[-1], is_training_phs[-1], bn_decay=bn_decay)
# loss = get_loss(pred, labels_phs[-1])
seg_loss = get_seg_loss(pred, labels_phs[-1], class_weight)
labels_gt = tf.cast(labels_phs[-1], tf.float32)
# labels_for_loss = pred_weights[0]*labels_pred + pred_weights[1]*labels_gt
labels_for_loss = labels_gt
disc_loss, l_var, l_dist, l_reg, disc_loss0, l_var0, l_dist0, l_reg0 = get_desc_loss(desp, sparse_mask_phs[-1])
# loss = desp_loss_weights[0] * seg_loss + desp_loss_weights[1]*(l_var0 + l_dist0 + l_dist + l_var)
loss = seg_loss + l_var0 + l_dist0 + l_dist + l_var
tf.summary.scalar('loss', loss)
tf.summary.scalar('seg_loss', seg_loss)
tf.summary.scalar('desp_loss', disc_loss)
tf.summary.scalar('desp_loss0', disc_loss0)
tf.summary.scalar('weight0', desp_loss_weights[0])
tf.summary.scalar('weight1', desp_loss_weights[1])
# tf.summary.scalar('nd_num', nd_num)
tf.summary.scalar('l_dist', l_dist)
tf.summary.scalar('l_var', l_var)
tf.summary.scalar('l_reg', l_reg)
tf.summary.scalar('l_dist0', l_dist0)
tf.summary.scalar('l_var0', l_var0)
tf.summary.scalar('l_reg0', l_reg0)
# tf.summary.scalar('positive', pd)
# tf.summary.scalar('negative', nd)
# tf.summary.scalar('feat_positive', feat_pd)
# tf.summary.scalar('feat_negative', feat_nd)
# tf.summary.scalar('positive_diff', pd_diff)
# tf.summary.scalar('negative_diff', nd_diff)
# tf.summary.scalar('positive_transpose_diff', pd_transpose_diff)
# tf.summary.scalar('negative_transpose_diff', nd_transpose_diff)
correct = tf.equal(tf.argmax(pred, 2), tf.to_int64(labels_phs[-1]))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE*NUM_POINT)
tf.summary.scalar('accuracy', accuracy)
tf.get_variable_scope().reuse_variables()
grads = trainer.compute_gradients(loss)
tower_grads.append(grads)
grads = average_gradients(tower_grads)
train_op = trainer.apply_gradients(grads, global_step=batch)
saver = tf.train.Saver(tf.global_variables(), sharded=True, max_to_keep=10)
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = False
config.allow_soft_placement = True
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'),
sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'))
# Init variables for two GPUs
init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init)
ops = {'pointclouds_phs': pointclouds_phs,
'labels_phs': labels_phs,
'is_training_phs': is_training_phs,
'sparse_mask_phs': sparse_mask_phs,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch,
'l_var0': l_var0,
'l_dist0': l_dist0,
'l_var': l_var,
'l_dist': l_dist}
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
# Save the variables to disk.
if epoch % 5 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR,'epoch_' + str(epoch)+'.ckpt'))
log_string("Model saved in file: %s" % save_path)
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
log_string('----')
# current_data, current_label, _ = provider.shuffle_data(r_train_data[:,0:NUM_POINT,:], r_train_label)
shuffle_idx = np.arange(len(r_train_data0))
np.random.shuffle(shuffle_idx)
r_train_data = r_train_data0[shuffle_idx]
r_train_mask = r_train_mask0[shuffle_idx]
r_train_label = r_train_label0[shuffle_idx]
l_train_data = l_train_data0[shuffle_idx]
l_train_mask = l_train_mask0[shuffle_idx]
l_train_label = l_train_label0[shuffle_idx]
current_data = r_train_data
current_label = r_train_label
# print(current_data.shape)
file_size = current_data.shape[0]
num_batches = 2 * file_size // (NUM_GPU * BATCH_SIZE)
total_correct = 0
total_seen = 0
loss_sum = 0
start_idxs, end_idxs = [], []
for batch_idx in range(num_batches):
if batch_idx % 100 == 0:
print('Current batch/total batch num: %d/%d'%(batch_idx,num_batches))
data_all, label_all, mask_all = [], [], []
for j in range(NUM_GPU):
start_idxs.append(int((batch_idx+j) * BATCH_SIZE // 2))
end_idxs.append(int((batch_idx+j+1) * BATCH_SIZE // 2))
start_idx = int((batch_idx+j) * BATCH_SIZE // 2)
end_idx = int((batch_idx+j+1) * BATCH_SIZE // 2)
cur_data = np.hstack((r_train_data[start_idx:end_idx, :, :], l_train_data[start_idx:end_idx, :, :])).reshape((-1, NUM_POINT, 3))
cur_mask = np.hstack((r_train_mask[start_idx:end_idx, :], l_train_mask[start_idx:end_idx, :])).reshape((-1, NUM_POINT))
cur_label = np.hstack((r_train_label[start_idx:end_idx, :], l_train_label[start_idx:end_idx, :])).reshape((-1, NUM_POINT))
for i in range(len(cur_data)):
cur_data[i] = np.matmul(cur_data[i], SO3.from_rpy(0, 0, *np.random.rand(1)*np.pi*2).as_matrix())
cur_data[i, :, :2] += (np.random.rand(2) - 0.5)*TRANS_NOISE
data_all.append(cur_data)
label_all.append(cur_label)
mask_all.append(cur_mask)
feed_dict = {}
for j in range(NUM_GPU):
feed_dict[ops['pointclouds_phs'][j]] = data_all[j]
feed_dict[ops['sparse_mask_phs'][j]] = mask_all[j]
feed_dict[ops['labels_phs'][j]] = label_all[j]
feed_dict[ops['is_training_phs'][j]] = is_training
# feed_dict = {ops['pointclouds_phs'][0]: cur_data,
# ops['pointclouds_phs'][1]: cur_data_1,
# ops['sparse_mask_phs'][0]: cur_mask,
# ops['sparse_mask_phs'][1]: cur_mask_1,
# ops['labels_phs'][0]: cur_label,
# ops['labels_phs'][1]: cur_label_1,
# ops['is_training_phs'][0]: is_training,
# ops['is_training_phs'][1]: is_training
# }
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'], ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
summary1 = tf.Summary(
value=[tf.Summary.Value(tag='iou', simple_value=step)])
train_writer.add_summary(summary1, step)
# print(pred_val.shape)
pred_val = np.argmax(pred_val, 2)
correct = np.sum(pred_val == label_all[start_idxs[-1]:end_idxs[-1]])
total_correct += correct
total_seen += (BATCH_SIZE*NUM_POINT)
loss_sum += loss_val
if VIS and batch_idx % 50 == 0:
label_gt = label_all[-1][0]
pc_val = data_all[-1][0]
label_pred = pred_val[0]
gt_pc = pc_val[np.where(label_gt>0)[0], :]
pred_pc = pc_val[np.where(label_pred>0)[0], :]
# if len(gt_pc)==0:
# gt_pc = np.array([[0, 0, 0]])
if len(pred_pc)==0:
pred_pc = np.array([[0, 0, 0]])
src_data_vis_np, src_data_vis_color_np = build_pc_node_keypoint_visual(pc_val, gt_pc, pred_pc, None, None)
visuals = OrderedDict([('src_data_vis', (src_data_vis_np, src_data_vis_color_np))
])
visualizer.display_current_results(visuals)
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
if __name__ == "__main__":
train()
LOG_FOUT.close()