-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrainers_singlegpu.py
573 lines (501 loc) · 27.6 KB
/
trainers_singlegpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2020-08-29 16:25:28
import os
import sys
import cv2
import shutil
import random
import numpy as np
from math import ceil
from pathlib import Path
from scipy.io import loadmat, savemat
from networks.derain_net import DerainNet
from networks.generators import GeneratorState, GeneratorRain
from skimage import img_as_float32, img_as_ubyte
from utils import batch_PSNR, batch_SSIM, calculate_parameters
# pytorch package
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.utils as vutils
from torch.utils.tensorboard import SummaryWriter
torch.set_default_dtype(torch.float32)
class trainer:
def __init__(self, args):
'''
:param args: options
'''
# setting random seed
self.seed = args['seed']
self.set_seed()
# setting visible gpu
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(x) for x in list(args['gpu_id']))
# collect training data
self.resume = args['resume']
self.latent_size = args['latent_size']
self.state_size = args['state_size']
self.motion_size = args['motion_size']
self.latent_dir_name = args['latent_dir_name']
self.train_path = args['train_path']
self.train_path_semi = args['train_path_semi']
self.tidy_train_data() # self.train_data_list
# collect testing data
self.test_path = args['test_path']
self.test_path_semi = args['test_path_semi']
self.tidy_test_data() # self.test_data, self.test_gt, self.test_data_semi, c x n x h x w, float, torch
# network settings
self.patch_size = args['patch_size']
self.feature_state = args['feature_state']
self.feature_rain_G = args['feature_rain_G']
self.n_resblocks = args['n_resblocks']
self.feature_derain_D = args['feature_derain_D']
# training settings
self.rho = args['rho']
self.tv_weight = args['tv_weight']
self.epsilon2 = args['epsilon2']
self.delta = args['delta']
self.epochs = args['epochs']
self.resume = args['resume']
self.lr_D = args['lr_D']
self.lr_GState = args['lr_GState']
self.lr_GRain = args['lr_GRain']
self.weight_decay_D = args['weight_decay_D']
self.weight_decay_GRain = args['weight_decay_GRain']
self.weight_decay_GState = args['weight_decay_GState']
self.milestones = args['milestones']
self.factor_lr = args['factor_lr']
self.max_grad_norm_D = args['max_grad_norm_D']
self.log_dir = args['log_dir']
self.model_dir = args['model_dir']
self.max_iter_EM = args['max_iter_EM']
self.pretrain_derain = args['pretrain_derain']
self.truncate = args['truncate']
self.truncate_test = args['truncate_test']
self.langevin_steps = args['langevin_steps']
self.print_freq = args['print_freq']
def set_seed(self):
print('*'*150)
print('Setting random seed: {:d}...'.format(self.seed))
np.random.seed(self.seed)
random.seed(self.seed)
torch.manual_seed(self.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def tidy_train_data(self):
print('*'*150)
print('Making training data...')
self.train_data_list = []
make_latent = True if self.resume is None else False
latent_dir = Path(self.train_path).parent / self.latent_dir_name
if make_latent:
if latent_dir.exists():
shutil.rmtree(str(latent_dir))
latent_dir.mkdir()
# labelled data
rain_data_list = sorted([str(x) for x in Path(self.train_path).glob('*_rain_*.mat')])
for rain_path in rain_data_list:
parts_path = Path(rain_path).name.split('_')
gt_path = Path(rain_path).parent / (parts_path[0]+'_gt_'+parts_path[-1])
latent_path = latent_dir / Path(rain_path).name.replace('rain', 'latent')
state_path = latent_dir / Path(rain_path).name.replace('rain', 'state')
motion_path = latent_dir / Path(rain_path).name.replace('rain', 'motion')
generator_path = latent_dir / (Path(rain_path).stem.replace('rain', 'generator')+'.pt')
if make_latent:
rain_data = loadmat(rain_path)['rain_data']
num_batch, _, num_frame = rain_data.shape[:3]
Z = np.random.randn(num_batch, num_frame, self.latent_size).astype(np.float32)
savemat(str(latent_path), {'Z': Z})
S = np.random.randn(num_batch, self.state_size).astype(np.float32)
savemat(str(state_path), {'S': S})
M = np.random.randn(num_batch, self.motion_size).astype(np.float32)
savemat(str(motion_path), {'M': M})
self.train_data_list.append({'rainy': rain_path,
'gt': str(gt_path),
'generator': str(generator_path),
'state': str(state_path),
'motion': str(motion_path),
'latent': str(latent_path)})
# unlabelled data
if self.train_path_semi:
rain_data_semi_list = sorted([str(x) for x in Path(self.train_path_semi).glob('*_rain_*.mat')])
for rain_path_semi in rain_data_semi_list:
latent_path_semi = latent_dir / Path(rain_path_semi).name.replace('rain', 'latent')
state_path_semi = latent_dir / Path(rain_path_semi).name.replace('rain', 'state')
motion_path_semi = latent_dir / Path(rain_path_semi).name.replace('rain', 'motion')
generator_path_semi = latent_dir / (Path(rain_path_semi).stem.replace('rain', 'generator')+'.pt')
if make_latent:
rain_data_semi = loadmat(rain_path_semi)['rain_data']
num_batch, _, num_frame = rain_data_semi.shape[:3]
Z = np.random.randn(num_batch, num_frame, self.latent_size).astype(np.float32)
savemat(str(latent_path_semi), {'Z': Z})
S = np.random.randn(num_batch, self.state_size).astype(np.float32)
savemat(str(state_path_semi), {'S': S})
M = np.random.randn(num_batch, self.motion_size).astype(np.float32)
savemat(str(motion_path_semi), {'M': M})
self.train_data_list.append({'rainy': rain_path_semi,
'generator': str(generator_path_semi),
'state': str(state_path_semi),
'motion': str(motion_path_semi),
'latent': str(latent_path_semi)})
random.shuffle(self.train_data_list)
def tidy_test_data(self):
print('*'*150)
print('Making testing data...')
test_data_list = sorted([x for x in Path(self.test_path).glob('*.jpg')])
for ii, rain_path in enumerate(test_data_list):
gt_path = Path(self.test_path).parent / Path(self.test_path).stem.replace('Rain', 'GT') / rain_path.name
im_rain = cv2.imread(str(rain_path), flags=cv2.IMREAD_COLOR)[:, :, ::-1].transpose([2,0,1])
im_gt = cv2.imread(str(gt_path), flags=cv2.IMREAD_COLOR)[:, :, ::-1].transpose([2,0,1])
if ii == 0:
test_data = im_rain[:, np.newaxis,]
test_gt = im_gt[:, np.newaxis,]
else:
test_data = np.concatenate((test_data, im_rain[:, np.newaxis,]), axis=1)
test_gt = np.concatenate((test_gt, im_gt[:, np.newaxis,]), axis=1)
self.test_gt = torch.from_numpy(img_as_float32(test_gt))
self.test_data = torch.from_numpy(img_as_float32(test_data))
test_data_semi_list = sorted([x for x in Path(self.test_path_semi).glob('*.jpg')])
for ii, rain_path_semi in enumerate(test_data_semi_list):
im_rain = cv2.imread(str(rain_path_semi), flags=cv2.IMREAD_COLOR)[:, :, ::-1].transpose([2,0,1])
if ii == 0:
test_data_semi = im_rain[:, np.newaxis,]
else:
test_data_semi = np.concatenate([test_data_semi, im_rain[:, np.newaxis,]], axis=1)
self.test_data_semi = torch.from_numpy(img_as_float32(test_data_semi))
def build_network(self):
self.GStateNet = GeneratorState(latent_size=self.latent_size,
state_size=self.state_size,
motion_size=self.motion_size,
num_feature=self.feature_state).cuda()
self.GRainNet = GeneratorRain(im_size=[self.patch_size,]*2,
out_channels=3,
state_size=self.state_size,
num_feature=self.feature_rain_G).cuda()
self.DNet = DerainNet(n_features=self.feature_derain_D,
n_resblocks=self.n_resblocks).cuda()
print('*'*150)
print('Number of parameters in Derain Net:{:d}'.format(calculate_parameters(self.DNet)))
def decay_lr(self, ii):
for stone in self.milestones:
if (ii+1) == stone:
self.optimizerD.param_groups[0]['lr'] *= self.factor_lr
def load_checkpoint(self):
if self.resume is not None:
print('Loading checkpoint from {:s}'.format(self.resume))
checkpoint_D = torch.load(self.resume)
self.DNet.load_state_dict(checkpoint_D['DNet'])
self.start_epoch = checkpoint_D['epoch']
self.log_im_step = checkpoint_D['step_img']
self.log_loss_step = checkpoint_D['step_loss']
self.max_grad_norm_D = checkpoint_D['max_grad_norm_D']
for ii in range(self.start_epoch):
self.decay_lr(ii)
else:
self.start_epoch = 0
self.log_loss_step = 0
self.log_im_step = {'train':0, 'test':0}
# path to save log
if Path(self.log_dir).is_dir():
shutil.rmtree(str(Path(self.log_dir)))
Path(self.log_dir).mkdir()
# path to save model
if Path(self.model_dir).is_dir():
shutil.rmtree(str(Path(self.model_dir)))
Path(self.model_dir).mkdir()
@staticmethod
def load_data_video(current_path, semi=True):
Y = loadmat(current_path['rainy'])['rain_data'] # num_batch x c x num_frame x p x p
Z = loadmat(current_path['latent'])['Z'] # num_batch x num_frame x latent_size
S = loadmat(current_path['state'])['S'] # num_batch x state_size
M = loadmat(current_path['motion'])['M'] # num_batch x state_size
if not semi:
Y_gt = loadmat(current_path['gt'])['gt_data'] # num_batch x c x num_frame x p x p
return Y, Y_gt, Z, S, M
else:
return Y, Z, S, M
@staticmethod
def tv1_norm3d(x, weight):
'''
Tv norm.
:param x: B x 3 x num_frame x p x p
:param weight: list with length 3
'''
B, C, N = x.shape[:3]
x_tv = (x[:, :, :, 1:, :] - x[:, :, :, :-1, :]).abs().sum() * weight[0]
y_tv = (x[:, :, :, :, 1:] - x[:, :, :, :, :-1]).abs().sum() * weight[1]
z_tv = (x[:, :, 1:, :, :] - x[:, :, :-1, :, :]).abs().sum() * weight[2]
tv_loss = (x_tv + y_tv + z_tv) / (B*C*N)
return tv_loss
def G_forward_truncate(self, truncate_Z, initial_state, motion_type):
'''
Forward propagation of Generator for truncated data.
:param truncate_Z: Batch x num_frame x latent_size tensor
:param initial_state: Batch x state_size tensor
:param motion_type: Batch x state_size tensor
'''
rain_gen_all = []
state_next = initial_state
B, num_frame = truncate_Z.shape[:2]
for ii in range(num_frame):
input_Z = truncate_Z[:, ii, :].view([B,-1])
state_next = self.GStateNet(input_Z, state_next, motion_type) # B x state_size
rain_gen = self.GRainNet(state_next) # B x 3 x p x p
rain_gen_all.append(rain_gen)
return torch.stack(rain_gen_all, dim=2), state_next
def get_loss_MStep(self, Y, back_pre, rain_gen, gt):
'''
:param Y: B x 3 x num_frame x p x p tensor, rainy video
:param back_pre: B x 3 x num_frame x p x p tensor, derained video
:param rain_gen: B x 3 x num_frame x p x p tensor, generated rain
:param gt: B x 3 x num_frame x p x p tensor, groundtruth video
'''
sigma = (Y - back_pre.detach() - rain_gen.detach()).flatten().std().item()
likelihood = 0.5 / (sigma**2) * (Y - back_pre - rain_gen).square().mean()
tv_loss = self.rho * self.tv1_norm3d(back_pre, self.tv_weight)
if gt is None:
mse_scale = torch.tensor(0)
else:
mse_scale = 0.5 / self.epsilon2 * (back_pre - gt).square().mean()
loss = likelihood + mse_scale + tv_loss
return loss, likelihood, mse_scale, tv_loss
@staticmethod
def get_loss_EStep(rain_gt, rain_gen):
'''
:param rain_gt: B x 3 x num_frame x p x p tensor, pesudoe rain layer groundtruth
:param rain_gen: B x 3 x num_frame x p x p tensor, generated rain
'''
B, _, N = rain_gt.shape[:3]
sigma = (rain_gt - rain_gen.detach()).flatten().std().item()
loss = 0.5 / (sigma**2) * (rain_gt - rain_gen).square().sum()
loss /= (B*N)
return loss
def freeze_Generator(self):
for param in self.GStateNet.parameters():
param.requires_grad = False
for param in self.GRainNet.parameters():
param.requires_grad = False
def unfreeze_Generator(self):
for param in self.GStateNet.parameters():
param.requires_grad = True
for param in self.GRainNet.parameters():
param.requires_grad = True
def predict_deraining(self):
# Deraining
self.DNet.eval()
current_data_list = [self.test_data, self.test_data_semi] if self.train_path_semi else [self.test_data,]
for kk, currrent_data in enumerate(current_data_list):
num_frame = currrent_data.shape[1]
test_data_derain = torch.zeros(currrent_data.shape) # c x n x p x p
for ii in range(ceil(num_frame / self.truncate_test)):
start_ind = ii * self.truncate_test
end_ind = min((ii+1) * self.truncate_test, num_frame)
inputs = currrent_data[:, start_ind:end_ind,].cuda() # c x truncate x p x p
with torch.set_grad_enabled(False):
out = self.DNet(inputs.unsqueeze(0)).clamp_(0.0, 1.0).squeeze(0)
test_data_derain[:, start_ind:end_ind, ] = out.cpu()
if len(current_data_list) == 2 and kk == 1:
x1 = vutils.make_grid(inputs.permute([1,0,2,3]), normalize=True, scale_each=True)
self.writer.add_image('Test Rainy Image', x1, self.log_im_step['test'])
x2 = vutils.make_grid(out.permute([1,0,2,3]), normalize=True, scale_each=True)
self.writer.add_image('Test Deained Image', x2, self.log_im_step['test'])
self.log_im_step['test'] += 1
else:
if random.randint(1,10) == 1:
x1 = vutils.make_grid(inputs.permute([1,0,2,3]), normalize=True, scale_each=True)
self.writer.add_image('Test Rainy Image', x1, self.log_im_step['test'])
x2 = vutils.make_grid(out.permute([1,0,2,3]), normalize=True, scale_each=True)
self.writer.add_image('Test Deained Image', x2, self.log_im_step['test'])
self.log_im_step['test'] += 1
if kk == 0:
self.psnrm = batch_PSNR(test_data_derain[:, 2:-2,].permute([1,0,2,3]),
self.test_gt[:, 2:-2,].permute([1,0,2,3]), ycbcr=False)
self.ssimm = batch_SSIM(test_data_derain[:, 2:-2,].permute([1,0,2,3]),
self.test_gt[:, 2:-2,].permute([1,0,2,3]), ycbcr=False)
def train(self):
# build network
self.build_network()
# optimizer
self.optimizerD = optim.Adam(self.DNet.parameters(),
lr=self.lr_D,
weight_decay=self.weight_decay_D,
betas = (0.5, 0.999))
# Loading from one specific checkpoint
self.load_checkpoint()
#open the tensorboard
self.writer = SummaryWriter(str(Path(self.log_dir)))
# begin training
for ii in range(self.start_epoch, self.epochs):
self.DNet.train()
lossM_epoch = likelihood_epoch = mse_epoch = tv_epoch = 0
mean_norm_grad_epoch_D = 0
for jj, current_path in enumerate(self.train_data_list):
if ii >= self.pretrain_derain:
checkpoint_path_G = current_path['generator']
checkpoint_G = torch.load(checkpoint_path_G)
self.GStateNet.load_state_dict(checkpoint_G['GState'])
self.GRainNet.load_state_dict(checkpoint_G['GRain'])
optimizerG = optim.Adam([{'params': self.GStateNet.parameters(),
'lr': self.lr_GState,
'weight_decay': self.weight_decay_GState},
{'params': self.GRainNet.parameters(),
'lr': self.lr_GRain,
'weight_decay': self.weight_decay_GRain}],
betas = (0.5, 0.999))
# load data
if 'gt' in current_path:
Y, Y_gt, Z, S, M = self.load_data_video(current_path, semi=False)
else:
Y, Z, S, M = self.load_data_video(current_path, semi=True)
assert self.patch_size == Y.shape[-1]
num_batch, _, num_frame = Y.shape[:3]
lossM_batch = likelihood_batch = mse_batch = tv_batch = 0
mean_norm_grad_batch_D = 0
input_M = torch.from_numpy(M).cuda()
for tt in range(ceil(num_frame / self.truncate)):
t_slice = slice(tt * self.truncate, min((tt+1)*self.truncate, num_frame))
inputs = torch.from_numpy(img_as_float32(Y[:, :, t_slice, ])).cuda()
if 'gt' in current_path:
gt = torch.from_numpy(img_as_float32(Y_gt[:, :, t_slice, ])).cuda()
else:
gt = None
input_Z = torch.from_numpy(Z[:, t_slice,]).cuda()
if tt == 0:
input_S = torch.from_numpy(S).cuda()
else:
input_S = torch.zeros_like(state_next, requires_grad=False).copy_(state_next.data)
# EM-algorithm
for _ in range(self.max_iter_EM):
# M-Step
self.optimizerD.zero_grad()
optimizerG.zero_grad()
rain_gen_M, state_next = self.G_forward_truncate(input_Z, input_S, input_M)
back_pre = self.DNet(inputs)
lossM, likelihood, mse_scale, tv = self.get_loss_MStep(inputs, back_pre,
rain_gen_M, gt)
lossM.backward()
current_norm_grad_D = nn.utils.clip_grad_norm_(self.DNet.parameters(), self.max_grad_norm_D)
self.optimizerD.step()
if (ii+1) > self.pretrain_derain:
optimizerG.step()
# accumulate loss of M-Step
lossM_batch += lossM.item()
likelihood_batch += likelihood.item()
mse_batch += mse_scale.item()
tv_batch += tv.item()
mean_norm_grad_batch_D += current_norm_grad_D
# E-Step
if (ii+1) > self.pretrain_derain:
self.freeze_Generator()
rain_gt = inputs - back_pre.detach()
for ss in range(self.langevin_steps):
input_Z.requires_grad = True
input_M.requires_grad = True
if tt == 0:
input_S.requires_grad = True
rain_gen_E, state_next = self.G_forward_truncate(input_Z, input_S, input_M)
lossE = self.get_loss_EStep(rain_gt, rain_gen_E)
lossE.backward()
if tt == 0:
input_S = input_S - 0.5 * (self.delta**2) * (input_S.grad + input_S/(num_batch*num_frame))
if ss < (self.langevin_steps/3):
input_S = input_S + self.delta * torch.randn_like(input_S)
input_S.detach_()
input_Z = input_Z - 0.5 * (self.delta**2) * (input_Z.grad + input_Z/(num_batch*num_frame))
input_M = input_M - 0.5 * (self.delta**2) * (input_M.grad + input_M/(num_batch*num_frame))
if ss < (self.langevin_steps/3):
input_Z = input_Z + self.delta * torch.randn_like(input_Z)
input_M = input_M + self.delta * torch.randn_like(input_M)
input_Z.detach_()
input_M.detach_()
self.unfreeze_Generator()
# update Z_rank and S_rank
if (ii+1) > self.pretrain_derain:
Z[:, t_slice,] = input_Z.data.cpu().numpy()
M = input_M.data.cpu().numpy()
if tt == 0:
S = input_S.data.cpu().numpy()
# tensorboard
if random.randint(1,20)==1:
ind_batch = random.randint(0, rain_gen_M.shape[0]-1)
x1 = vutils.make_grid(inputs[ind_batch,].squeeze().permute([1,0,2,3]), normalize=False, scale_each=False)
self.writer.add_image('Train Rainy Image', x1, self.log_im_step['train'])
x3 = vutils.make_grid(back_pre[ind_batch,].squeeze().permute([1,0,2,3]).clamp_(0.0, 1.0), normalize=False, scale_each=False)
self.writer.add_image('Train Deained Image', x3, self.log_im_step['train'])
x4 = rain_gen_M[ind_batch,].squeeze().permute([1,0,2,3])
x5 = (inputs[ind_batch,]-back_pre[ind_batch,]).squeeze().permute([1,0,2,3]).clamp_(min=0)
temp = vutils.make_grid(torch.cat([x4, x5], dim=0), normalize=True, scale_each=True)
self.writer.add_image('Train Rains and Residual', temp, self.log_im_step['train'])
self.log_im_step['train'] += 1
# save the updated latent variable
if (ii+1) > self.pretrain_derain:
savemat(current_path['latent'], {'Z':Z})
savemat(current_path['state'], {'S':S})
savemat(current_path['motion'], {'M':M})
# calculate the mean loss of each video
lossM_batch /= ((tt+1)*self.max_iter_EM)
likelihood_batch /= ((tt+1)*self.max_iter_EM)
mse_batch /= ((tt+1)*self.max_iter_EM)
tv_batch /= ((tt+1)*self.max_iter_EM)
mean_norm_grad_batch_D /= ((tt+1)*self.max_iter_EM)
lossM_epoch += lossM_batch
likelihood_epoch += likelihood_batch
mse_epoch += mse_batch
tv_epoch += tv_batch
mean_norm_grad_epoch_D += mean_norm_grad_batch_D
# print log
if (jj+1) % self.print_freq==0:
self.writer.add_scalar('LossM_Batch', lossM_batch, self.log_loss_step)
self.log_loss_step += 1
lr_D = self.optimizerD.param_groups[0]['lr']
lr_GState = optimizerG.param_groups[0]['lr']
lr_GRain = optimizerG.param_groups[1]['lr']
log_str = 'M-Step: Epoch:{:03d}/{:03d}, Video:{:03d}/{:03d}, ' + \
'LossM:{:.2e}({:.2e}/{:.2e}/{:.2e}), GradD:{:.2e}/{:.2e}, ' + \
'lrSRD:{:.2e}/{:.2e}/{:.2e}'
print(log_str.format(ii+1, self.epochs, jj+1, len(self.train_data_list),
lossM_batch, likelihood_batch, mse_batch, tv_batch, mean_norm_grad_batch_D,
self.max_grad_norm_D, lr_GState, lr_GRain, lr_D))
# save the rain generator
if (ii+1) >= self.pretrain_derain:
torch.save({'GState': self.GStateNet.state_dict(),
'GRain': self.GRainNet.state_dict()}, current_path['generator'])
# calculate the mean loss of each epoch
lossM_epoch /= (jj+1)
likelihood_epoch /= (jj+1)
mse_epoch /= (jj+1)
tv_epoch /= (jj+1)
mean_norm_grad_epoch_D /= (jj+1)
# print loss and testing
print('-'*150)
log_str = 'Train: Epoch:{:02d}/{:02d}, LossM:{:.2e} ({:.2e}/{:.2e}/{:.2e}), GradD:{:.2e}/{:.2e}'
print(log_str.format(ii+1, self.epochs, lossM_epoch, likelihood_epoch, mse_epoch,
tv_epoch, mean_norm_grad_epoch_D, self.max_grad_norm_D))
# testing
self.predict_deraining()
print('='*150)
log_str = 'Test: Epoch:{:02d}/{:02d}, PSNR={:4.2f}, SSIM={:6.4f}'
print(log_str.format(ii+1, self.epochs, self.psnrm, self.ssimm))
print('='*150)
# tensorboard
self.writer.add_scalar('PSNR', self.psnrm, ii)
self.writer.add_scalar('SSIM', self.ssimm, ii)
self.writer.add_scalar('LossM_Epoch', lossM_epoch, ii)
self.max_grad_norm_D = min(self.max_grad_norm_D, mean_norm_grad_epoch_D)
# adjust learning rate
self.decay_lr(ii)
# save model
model_prefix = 'model_'
save_path_model = str(Path(self.model_dir) / (model_prefix+str(ii+1)))
torch.save({'epoch': ii+1,
'step_loss': self.log_loss_step+1,
'step_img': {x:self.log_im_step[x]+1 for x in self.log_im_step.keys()},
'max_grad_norm_D': self.max_grad_norm_D,
'DNet': self.DNet.state_dict(),
'optimizerD_state_dict': self.optimizerD.state_dict()}, save_path_model)
model_state_prefix = 'model_state_'
save_path_model_state = str(Path(self.model_dir) / (model_state_prefix+str(ii+1)+'.pt'))
torch.save(self.DNet.state_dict(), save_path_model_state)
# close tensorboard
self.writer.close()