We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
n_images_train: 82783 tl : Build Image Embeddings = InceptionV3 + Dense Layer / uses SlimNetsLayer and DenseLayer instead tensorlayer:Instantiate InputLayer input_image_layer: (64, 299, 299, 3) tensorlayer:Instantiate SlimNetsLayer InceptionV3: inception_v3 tensorlayer:Instantiate DenseLayer image_embedding: 512, identity tl : Build Seq Embedding EmbeddingInputlayer tensorlayer:Instantiate EmbeddingInputlayer seq_embedding: (12000, 512) tl : Build Model = image_embeddings + seq_embeddings + LSTMs + Dropout LSTM tensorlayer:Instantiate ReshapeLayer reshape_layer: (64, 1, 512) Tensor("lstm/reshape_layer:0", shape=(64, 1, 512), dtype=float32) tensorlayer:Instantiate DynamicRNNLayer embed: n_hidden:512, in_dim:3 (64, 1, 512), cell_fn:BasicLSTMCell, dropout:None, n_layer:1 batch_size (concurrent processes): 64 n_params : 2 Traceback (most recent call last): File "train_im2txt2im_coco_64.py", line 871, in <module> tf.app.run() File "/home/gcloud1998/.local/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 125, in run _sys.exit(main(argv)) File "train_im2txt2im_coco_64.py", line 517, in main softmax, net_img_rnn, net_seq_rnn, state_feed = Build_Model(mode, net_image_embeddings, net_seq_embeddings, target_seqs=None, input_mask=None) File "/home/gcloud1998/Desktop/im2txt2im/model_im2txt.py", line 598, in Build_Model name = 'embed', File "/home/gcloud1998/Desktop/im2txt2im/tensorlayer/layers.py", line 3506, in __init__ self.outputs = tf.reshape(tf.concat(1, outputs), [-1, n_hidden]) File "/home/gcloud1998/.local/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 1121, in concat dtype=dtypes.int32).get_shape().assert_is_compatible_with( File "/home/gcloud1998/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1048, in convert_to_tensor as_ref=False) File "/home/gcloud1998/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1144, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "/home/gcloud1998/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 981, in _TensorTensorConversionFunction (dtype.name, t.dtype.name, str(t))) ValueError: Tensor conversion requested dtype int32 for Tensor with dtype float32: 'Tensor("lstm/embed/rnn/transpose_1:0", shape=(64, 1, 512), dtype=float32)'
The text was updated successfully, but these errors were encountered:
Hello,do you solve it?
Sorry, something went wrong.
No branches or pull requests
n_images_train: 82783 tl : Build Image Embeddings = InceptionV3 + Dense Layer / uses SlimNetsLayer and DenseLayer instead tensorlayer:Instantiate InputLayer input_image_layer: (64, 299, 299, 3) tensorlayer:Instantiate SlimNetsLayer InceptionV3: inception_v3 tensorlayer:Instantiate DenseLayer image_embedding: 512, identity tl : Build Seq Embedding EmbeddingInputlayer tensorlayer:Instantiate EmbeddingInputlayer seq_embedding: (12000, 512) tl : Build Model = image_embeddings + seq_embeddings + LSTMs + Dropout LSTM tensorlayer:Instantiate ReshapeLayer reshape_layer: (64, 1, 512) Tensor("lstm/reshape_layer:0", shape=(64, 1, 512), dtype=float32) tensorlayer:Instantiate DynamicRNNLayer embed: n_hidden:512, in_dim:3 (64, 1, 512), cell_fn:BasicLSTMCell, dropout:None, n_layer:1 batch_size (concurrent processes): 64 n_params : 2 Traceback (most recent call last): File "train_im2txt2im_coco_64.py", line 871, in <module> tf.app.run() File "/home/gcloud1998/.local/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 125, in run _sys.exit(main(argv)) File "train_im2txt2im_coco_64.py", line 517, in main softmax, net_img_rnn, net_seq_rnn, state_feed = Build_Model(mode, net_image_embeddings, net_seq_embeddings, target_seqs=None, input_mask=None) File "/home/gcloud1998/Desktop/im2txt2im/model_im2txt.py", line 598, in Build_Model name = 'embed', File "/home/gcloud1998/Desktop/im2txt2im/tensorlayer/layers.py", line 3506, in __init__ self.outputs = tf.reshape(tf.concat(1, outputs), [-1, n_hidden]) File "/home/gcloud1998/.local/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 1121, in concat dtype=dtypes.int32).get_shape().assert_is_compatible_with( File "/home/gcloud1998/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1048, in convert_to_tensor as_ref=False) File "/home/gcloud1998/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1144, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "/home/gcloud1998/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 981, in _TensorTensorConversionFunction (dtype.name, t.dtype.name, str(t))) ValueError: Tensor conversion requested dtype int32 for Tensor with dtype float32: 'Tensor("lstm/embed/rnn/transpose_1:0", shape=(64, 1, 512), dtype=float32)'
The text was updated successfully, but these errors were encountered: