-
Notifications
You must be signed in to change notification settings - Fork 34
/
prompt_ensemble.py
264 lines (215 loc) · 12.4 KB
/
prompt_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
from typing import Union, List
from pkg_resources import packaging
import torch
import numpy as np
from AnomalyCLIP_lib.simple_tokenizer import SimpleTokenizer as _Tokenizer
# from open_clip import tokenizer
# simple_tokenizer = tokenizer.SimpleTokenizer()
from copy import deepcopy
import torch.nn as nn
_tokenizer = _Tokenizer()
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
"""
Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
truncate: bool
Whether to truncate the text in case its encoding is longer than the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
"""
if isinstance(texts, str):
texts = [texts]
sot_token = _tokenizer.encoder["<|startoftext|>"]
eot_token = _tokenizer.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
else:
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate:
tokens = tokens[:context_length]
tokens[-1] = eot_token
else:
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def encode_text_with_prompt_ensemble(model, texts, device):
prompt_normal = ['{}', 'flawless {}', 'perfect {}', 'unblemished {}', '{} without flaw', '{} without defect', '{} without damage']
prompt_abnormal = ['damaged {}', 'broken {}', '{} with flaw', '{} with defect', '{} with damage']
prompt_state = [prompt_normal, prompt_abnormal]
prompt_templates = ['a bad photo of a {}.', 'a low resolution photo of the {}.', 'a bad photo of the {}.', 'a cropped photo of the {}.', 'a bright photo of a {}.', 'a dark photo of the {}.', 'a photo of my {}.', 'a photo of the cool {}.', 'a close-up photo of a {}.', 'a black and white photo of the {}.', 'a bright photo of the {}.', 'a cropped photo of a {}.', 'a jpeg corrupted photo of a {}.', 'a blurry photo of the {}.', 'a photo of the {}.', 'a good photo of the {}.', 'a photo of one {}.', 'a close-up photo of the {}.', 'a photo of a {}.', 'a low resolution photo of a {}.', 'a photo of a large {}.', 'a blurry photo of a {}.', 'a jpeg corrupted photo of the {}.', 'a good photo of a {}.', 'a photo of the small {}.', 'a photo of the large {}.', 'a black and white photo of a {}.', 'a dark photo of a {}.', 'a photo of a cool {}.', 'a photo of a small {}.', 'there is a {} in the scene.', 'there is the {} in the scene.', 'this is a {} in the scene.', 'this is the {} in the scene.', 'this is one {} in the scene.']
text_features = []
for i in range(len(prompt_state)):
prompted_state = [state.format(texts[0]) for state in prompt_state[i]]
prompted_sentence = []
for s in prompted_state:
for template in prompt_templates:
prompted_sentence.append(template.format(s))
prompted_sentence = tokenize(prompted_sentence)
class_embeddings = model.encode_text(prompted_sentence.to(device))
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding /= class_embedding.norm()
text_features.append(class_embedding)
text_features = torch.stack(text_features, dim=1).to(device).t()
return text_features
def _get_clones(module, N):
return nn.ModuleList([deepcopy(module) for i in range(N)])
class AnomalyCLIP_PromptLearner(nn.Module):
def __init__(self, clip_model, design_details):
super().__init__()
classnames = ["object"]
self.n_cls = len(classnames)
self.n_ctx = design_details["Prompt_length"]
n_ctx_pos = self.n_ctx
n_ctx_neg = self.n_ctx
self.text_encoder_n_ctx = design_details["learnabel_text_embedding_length"]
ctx_init_pos = ""
ctx_init_neg = ""
dtype = clip_model.transformer.get_cast_dtype()
ctx_dim = clip_model.ln_final.weight.shape[0]
self.classnames = classnames
self.state_normal_list = [
"{}",
]
self.state_anomaly_list = [
"damaged {}",
]
normal_num = len(self.state_normal_list)
anormaly_num = len(self.state_anomaly_list)
self.normal_num = normal_num
self.anormaly_num = anormaly_num
if ctx_init_pos and ctx_init_neg:
# use given words to initialize context vectors
ctx_init_pos = ctx_init_pos.replace("_", " ")
ctx_init_neg = ctx_init_neg.replace("_", " ")
n_ctx_pos = len(ctx_init_pos.split(" "))
n_ctx_neg = len(ctx_init_neg.split(" "))
#初始化text成bpd编码
prompt_pos = tokenize(ctx_init_pos)
prompt_neg = tokenize(ctx_init_neg)
with torch.no_grad():
#生成相应的text embedding
embedding_pos = clip_model.token_embedding(prompt_pos).type(dtype)
embedding_neg = clip_model.token_embedding(prompt_neg).type(dtype)
#这些是去除出来EOS 和 # CLS, EOS, 获得可学习的textual prompt
ctx_vectors_pos = embedding_pos[0, 1: 1 + n_ctx_pos, :]
ctx_vectors_neg = embedding_neg[0, 1: 1 + n_ctx_neg, :]
prompt_prefix_pos = ctx_init_pos
prompt_prefix_neg = ctx_init_neg
if True:
ctx_vectors_pos_ = []
ctx_vectors_neg_ = []
for _ in range(self.n_cls):
ctx_vectors_pos_.append(deepcopy(ctx_vectors_pos))
ctx_vectors_neg_.append(deepcopy(ctx_vectors_neg))
ctx_vectors_pos = torch.stack(ctx_vectors_pos_, dim=0)
ctx_vectors_neg = torch.stack(ctx_vectors_neg_, dim=0)
else:
# Random Initialization
if True:
print("Initializing class-specific contexts")
#这里是cls是类的个数,n_ctx_pos代表learnable token的长度,ctx_dim表示prompt的dimension
ctx_vectors_pos = torch.empty(self.n_cls, self.normal_num, n_ctx_pos, ctx_dim, dtype=dtype)
ctx_vectors_neg = torch.empty(self.n_cls, self.anormaly_num, n_ctx_neg, ctx_dim, dtype=dtype)
else:
print("Initializing a generic context")
ctx_vectors_pos = torch.empty(n_ctx_pos, ctx_dim, dtype=dtype)
ctx_vectors_neg = torch.empty(n_ctx_neg, ctx_dim, dtype=dtype)
nn.init.normal_(ctx_vectors_pos, std=0.02)
nn.init.normal_(ctx_vectors_neg, std=0.02)
prompt_prefix_pos = " ".join(["X"] * n_ctx_pos)
prompt_prefix_neg = " ".join(["X"] * n_ctx_neg)
self.compound_prompts_depth = design_details["learnabel_text_embedding_depth"]
self.compound_prompts_text = nn.ParameterList([nn.Parameter(torch.empty(self.text_encoder_n_ctx, ctx_dim))
for _ in range(self.compound_prompts_depth - 1)])
for single_para in self.compound_prompts_text:
print("single_para", single_para.shape)
nn.init.normal_(single_para, std=0.02)
single_layer = nn.Linear(ctx_dim, 896)
self.compound_prompt_projections = _get_clones(single_layer, self.compound_prompts_depth - 1)
self.ctx_pos = nn.Parameter(ctx_vectors_pos) # to be optimized
self.ctx_neg = nn.Parameter(ctx_vectors_neg) # to be optimized
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts_pos = [prompt_prefix_pos + " " + template.format(name)+ "." for template in self.state_normal_list for name in classnames]
prompts_neg = [prompt_prefix_neg + " " + template.format(name)+ "." for template in self.state_anomaly_list for name in classnames]
tokenized_prompts_pos = []
tokenized_prompts_neg = []
for p_pos in prompts_pos:
tokenized_prompts_pos.append(tokenize(p_pos))
for p_neg in prompts_neg:
tokenized_prompts_neg.append(tokenize(p_neg))
tokenized_prompts_pos = torch.cat(tokenized_prompts_pos)
tokenized_prompts_neg = torch.cat(tokenized_prompts_neg)
#生成相应的text embedding
with torch.no_grad():
embedding_pos = clip_model.token_embedding(tokenized_prompts_pos).type(dtype)
embedding_neg = clip_model.token_embedding(tokenized_prompts_neg).type(dtype)
n, l, d = embedding_pos.shape
print("embedding_pos", embedding_pos.shape)
embedding_pos = embedding_pos.reshape(normal_num, self.n_cls, l, d).permute(1, 0, 2, 3)
embedding_neg = embedding_neg.reshape(anormaly_num, self.n_cls, l, d).permute(1, 0, 2, 3)
self.register_buffer("token_prefix_pos", embedding_pos[:, :, :1, :] )
self.register_buffer("token_suffix_pos", embedding_pos[:, :,1 + n_ctx_pos:, :])
self.register_buffer("token_prefix_neg", embedding_neg[:,:, :1, :])
self.register_buffer("token_suffix_neg", embedding_neg[:, :, 1 + n_ctx_neg:, :])
n, d = tokenized_prompts_pos.shape
tokenized_prompts_pos = tokenized_prompts_pos.reshape(normal_num, self.n_cls, d).permute(1, 0, 2)
n, d = tokenized_prompts_neg.shape
tokenized_prompts_neg = tokenized_prompts_neg.reshape(anormaly_num, self.n_cls, d).permute(1, 0, 2)
self.n_ctx_pos = n_ctx_pos
self.n_ctx_neg = n_ctx_neg
# tokenized_prompts = torch.cat([tokenized_prompts_pos, tokenized_prompts_neg], dim=0) # torch.Tensor
self.register_buffer("tokenized_prompts_pos", tokenized_prompts_pos)
self.register_buffer("tokenized_prompts_neg", tokenized_prompts_neg)
print("tokenized_prompts shape", self.tokenized_prompts_pos.shape, self.tokenized_prompts_neg.shape)
def forward(self, cls_id =None):
ctx_pos = self.ctx_pos
ctx_neg = self.ctx_neg
ctx_pos = self.ctx_pos
ctx_neg = self.ctx_neg
# print("shape", self.ctx_pos[0:1].shape, ctx_pos.shape)
prefix_pos = self.token_prefix_pos
prefix_neg = self.token_prefix_neg
suffix_pos = self.token_suffix_pos
suffix_neg = self.token_suffix_neg
# print(prefix_pos.shape, prefix_neg.shape)
prompts_pos = torch.cat(
[
# N(the number of template), 1, dim
prefix_pos, # (n_cls, 1, dim)
ctx_pos, # (n_cls, n_ctx, dim)
suffix_pos, # (n_cls, *, dim)
],
dim=2,
)
prompts_neg = torch.cat(
[
prefix_neg, # (n_cls, 1, dim)
ctx_neg, # (n_cls, n_ctx, dim)
suffix_neg, # (n_cls, *, dim)
],
dim=2,
)
_, _, l, d = prompts_pos.shape
prompts_pos = prompts_pos.reshape(-1, l, d)
_, _, l, d = prompts_neg.shape
prompts_neg = prompts_neg.reshape(-1, l, d)
prompts = torch.cat([prompts_pos, prompts_neg], dim=0)
_, l, d = self.tokenized_prompts_pos.shape
tokenized_prompts_pos = self.tokenized_prompts_pos.reshape(-1, d)
_, l, d = self.tokenized_prompts_neg.shape
tokenized_prompts_neg = self.tokenized_prompts_neg.reshape(-1, d)
tokenized_prompts = torch.cat((tokenized_prompts_pos, tokenized_prompts_neg), dim = 0)
return prompts, tokenized_prompts, self.compound_prompts_text