forked from PeterJDerrick89/companies-house-big-data-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcha_pipeline.py
313 lines (248 loc) · 12.2 KB
/
cha_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from os import listdir, chdir, getcwd, popen
from os.path import isfile, join
import time
import argparse
import sys
# import cv2
import configparser
import os
import re
import numpy as np
import pandas as pd
import importlib
from datetime import datetime
from dateutil import parser
from bs4 import BeautifulSoup as BS # Can parse xml or html docs
config = configparser.ConfigParser()
config.read("cha_pipeline.cfg")
xbrl_web_scraper = config.get('cha_workflow', 'xbrl_web_scraper')
xbrl_web_scraper_validator = config.get('cha_workflow', 'xbrl_validator')
xbrl_unpacker = config.get('cha_workflow', 'xbrl_unpacker')
xbrl_parser = config.get('cha_workflow', 'xbrl_parser')
xbrl_file_appender = config.get('cha_workflow', 'xbrl_file_appender')
pdf_web_scraper = config.get('cha_workflow', 'pdf_web_scraper')
pdfs_to_images = config.get('cha_workflow', 'pdfs_to_images')
train_classifier_model = config.get('cha_workflow', 'train_classifier_model')
binary_classifier = config.get('cha_workflow', 'binary_classifier')
ocr_functions = config.get('cha_workflow', 'ocr_functions')
nlp_functions = config.get('cha_workflow', 'nlp_functions')
merge_xbrl_to_pdf_data = config.get('cha_workflow', 'merge_xbrl_to_pdf_data')
# Arguments for the XBRL web scraper
scraped_dir = config.get('xbrl_web_scraper_args', 'scraped_dir')
xbrl_scraper = config.get('xbrl_web_scraper_args', 'xbrl_scraper')
# Arguments for the XBRL web scraper validator
validator_scraped_dir = config.get('xbrl_validator_args', 'scraped_dir')
# Arguments for the XBRL unpacker
unpacker_source_dir = config.get('xbrl_unpacker_args', 'xbrl_unpacker_file_source_dir')
unpacker_destination_dir = config.get('xbrl_unpacker_args', 'xbrl_unpacker_file_destination_dir')
# Arguments for the XBRL parser
xbrl_unpacked_data = config.get('xbrl_parser_args', 'xbrl_parser_data_dir')
xbrl_processed_csv = config.get('xbrl_parser_args', 'xbrl_parser_processed_csv_dir')
xbrl_tag_frequencies = config.get('xbrl_parser_args', 'xbrl_parser_tag_frequencies')
xbrl_tag_list = config.get('xbrl_parser_args', 'xbrl_parser_tag_list')
xbrl_parser_process_year = config.get('xbrl_parser_args', 'xbrl_parser_process_year')
xbrl_parser_process_quarter = config.get('xbrl_parser_args', 'xbrl_parser_process_quarter')
xbrl_parser_custom_input = config.get('xbrl_parser_args', 'xbrl_parser_custom_input')
# Arguments for xbrl appender
xbrl_file_appender_indir = config.get('xbrl_file_appender_args', 'xbrl_file_appender_indir')
xbrl_file_appender_outdir = config.get('xbrl_file_appender_args', 'xbrl_file_appender_outdir')
xbrl_file_appender_year = config.get('xbrl_file_appender_args', 'xbrl_file_appender_year')
xbrl_file_appender_quarter = config.get('xbrl_file_appender_args', 'xbrl_file_appender_quarter')
# Arguments for xbrl melt to pivot table
# Arguments for xbrl subsets
# Arguments for the filing_fetcher scraper
filed_accounts_scraped_dir = config.get('pdf_web_scraper_args', 'filed_accounts_scraped_dir')
filed_accounts_scraper = config.get('pdf_web_scraper_args', 'filed_accounts_scraper')
# Arguments for pdfs_to_images
# Arguments for train_classifier_model
# Arguments for binary_classifier
# Arguments for binary_classifier_accuracy
# Arguments for ocr_functions
# Arguments for nlp_functions
# Arguments for merge_xbrl_to_pdf_data
from src.data_processing.cst_data_processing import DataProcessing
from src.classifier.cst_classifier import Classifier
from src.performance_metrics.binary_classifier_metrics import BinaryClassifierMetrics
from src.data_processing.xbrl_pd_methods import XbrlExtraction
from src.validators.xbrl_validator_methods import XbrlValidatorMethods
from src.data_processing.combine_csvfiles import XbrlCsvAppender
def main():
print("-" * 50)
# Execute module xbrl_web_scraper
if xbrl_web_scraper == str(True):
print("XBRL web scraper running...")
print("Scraping XBRL data to:", scraped_dir)
print("Running crawler from:", xbrl_scraper)
chdir(xbrl_scraper)
print(getcwd())
cmdlinestr = "scrapy crawl xbrl_scraper"
popen(cmdlinestr).read()
# Validate xbrl data
if xbrl_web_scraper_validator == str(True):
validator = XbrlValidatorMethods()
print("Validating xbrl web scraped data...")
validator.validate_compressed_files(validator_scraped_dir)
# Execute module xbrl_unpacker
if xbrl_unpacker == str(True):
print("XBRL unpacker running...")
print("Unpacking zip files...")
print("Reading from directory: ", unpacker_source_dir)
print("Writing to directory: ", unpacker_destination_dir)
unpacker = DataProcessing()
unpacker.extract_compressed_files(unpacker_source_dir, unpacker_destination_dir)
# Execute module xbrl_parser
if xbrl_parser == str(True):
print("XBRL parser running...")
extractor = XbrlExtraction()
# Create a list of months based on what quarter in the year has been specified
if xbrl_parser_process_quarter == "1":
month_list = ['January', 'February', 'March']
elif xbrl_parser_process_quarter == "2":
month_list = ['April', 'May', 'June']
elif xbrl_parser_process_quarter == "3":
month_list = ['July', 'August', 'September']
elif xbrl_parser_process_quarter == "4":
month_list = ['October', 'November', 'December']
else:
month_list = ['January', 'February', 'March', 'April', 'May', 'June',
'July', 'August', 'September', 'October', 'November', 'December']
if xbrl_parser_process_quarter != "None":
print("Invalid quarter specified...processing one year of data!")
# Create a list of directories from each month present in the month list
directory_list = []
if xbrl_parser_custom_input == "None":
for month in month_list:
directory_list.append(xbrl_unpacked_data
+ "/Accounts_Monthly_Data-"
+ month
+ xbrl_parser_process_year)
# If a custom list has been specified as a comma separated string, use this instead
else:
folder_list = xbrl_parser_custom_input.split(",")
for folder in folder_list:
directory_list.append(xbrl_unpacked_data + "/" + folder)
for directory in directory_list:
print("Parsing " + directory + "...")
# Get all the filenames from the example folder
files, folder_month, folder_year = extractor.get_filepaths(directory)
print(len(files))
# Here you can splice/truncate the number of files you want to process for testing
# TO BE COMMENTED OUT AFTER TESTING
#files = files[0:40]
files = files[0:5]
print(folder_month, folder_year)
# Finally, build a table of all variables from all example (digital) documents
# This can take a while
results = extractor.build_month_table(files)
print(results.shape)
results.head(10)
extractor.output_xbrl_month(results, xbrl_processed_csv, folder_month, folder_year)
# Find list of all unique tags in dataset
list_of_tags = results["name"].tolist()
list_of_tags_unique = list(set(list_of_tags))
print("Longest tag: ", len(max(list_of_tags_unique, key=len)))
# Output all unique tags to a txt file
extractor.retrieve_list_of_tags(
results,
"name",
xbrl_tag_list,
folder_month,
folder_year
)
# Output all unique tags and their relative frequencies to a txt file
extractor.get_tag_counts(
results,
"name",
xbrl_tag_frequencies,
folder_month,
folder_year
)
# print(results.shape)
#tempcsv = pd.read_csv("/shares/xbrl_parsed_data/2020-April_xbrl_data.csv", lineterminator='\n')
#print(tempcsv.head(5000000))
#print(tempcsv.shape)
# Append XBRL data on an annual or quarterly basis
if xbrl_file_appender == str(True):
appender = XbrlCsvAppender()
print("XBRL appender running...")
appender.merge_files_by_year(xbrl_file_appender_indir,
xbrl_file_appender_outdir,
xbrl_file_appender_year,
xbrl_file_appender_quarter)
# Execute PDF web scraper
if pdf_web_scraper == str(True):
print("PDF web scraper running...")
print("Scraping filed accounts as PDF data to:", filed_accounts_scraped_dir)
print("Running crawler from:", filed_accounts_scraper)
chdir(filed_accounts_scraper)
print(getcwd())
paper_filing_cmdlinestr = "scrapy crawl latest_paper_filing"
popen(paper_filing_cmdlinestr).read()
# Convert PDF files to images
if pdfs_to_images == str(True):
print("Converting all PDFs to images...")
# Train the Classifier model
if train_classifier_model == str(True):
print("Training classifier model...")
# Execute binary Classifier
if binary_classifier == str(True):
print("Executing binary classifier...")
# Execute OCR
if ocr_functions == str(True):
print("Running all OCR functions...")
# instance to class
# Execute NLP
if nlp_functions == str(True):
print("Running all NLP functions...")
# Merge xbrl and PDF file data
if merge_xbrl_to_pdf_data == str(True):
print("Merging XBRL and PDF data...")
"""
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--input_imgs", required = True,
help = "path to a directory containing images to be used as input data")
ap.add_argument("-c", "--cascade_file", required = True,
help = "path to cascade classifier.")
ap.add_argument("-s", "--scale_factor", required = True,
help = "cascade classifier scale factor.")
ap.add_argument("-m", "--min_neighbors", required = True,
help = "cascade classifier min neighbors.")
ap.add_argument("-x", "--cascade_width", required = True,
help = "cascade classifier starting sample width.")
ap.add_argument("-y", "--cascade_height", required = True,
help = "cascade classifier starting sample height.")
ap.add_argument("-o", "--classifier_output_dir", required = True,
help = "path to classifier output.")
ap.add_argument("-p", "--processed_images_dir", required = True,
help = "path to images processed by the classifier.")
ap.add_argument("-v", "--show_classifier_output", required = False,
help = "display the output of the classifier to the user.")
args = vars(ap.parse_args())
detector = cv2.CascadeClassifier(args["cascade_file"])
# load the input image and convert it to grayscale
for image in listdir(args["input_imgs"]):
img = Classifier.classifier_input(join(args["input_imgs"], image))
grey = Classifier.imgs_to_grey(img)
rects = Classifier.ensemble(detector,
grey,
float(args["scale_factor"]),
int(args["min_neighbors"]),
int(args["cascade_width"]),
int(args["cascade_height"]))
print("\n[INFO] Found " + str(Classifier.count_classifier_output(rects)) + " companies house stamps.")
Classifier.classifier_output(rects, img, args["classifier_output_dir"])
Classifier.classifier_process(img, join(args["processed_images_dir"], image))
if args["show_classifier_output"] == "True":
Classifier.display_classifier_output(image, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
else:
pass
"""
if __name__ == "__main__":
process_start = time.time()
main()
print("-" * 50)
print("Process Complete")
print("The time taken to process an image is: ", "{}".format((time.time() - process_start) / 60, 2), " minutes")