-
Notifications
You must be signed in to change notification settings - Fork 0
/
MHNF.py
321 lines (273 loc) · 12.9 KB
/
MHNF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import dgl
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn.pytorch import GraphConv, EdgeWeightNorm
from ..utils import transform_relation_graph_list
from . import BaseModel, register_model
@register_model('MHNF')
class MHNF(BaseModel):
r"""
MHNF from paper `Multi-hop Heterogeneous Neighborhood information Fusion graph representation learning
<https://arxiv.org/pdf/2106.09289.pdf>`__.
Given a heterogeneous graph :math:`G` and its edge relation type set :math:`\mathcal{R}`.Then we can extract l-hops hybrid adjacency matrix list
in HMAE model. The hybrid adjacency matrix list can be used in HLHIA model to generate l-hops representations. Then HSAF
model use attention mechanism to aggregate l-hops representations and because of multi-channel conv, the
HSAF model also aggregates different channels l-hops representations to generate a final representation.
You can see detail operation in correspond model.
Parameters
----------
num_edge_type : int
Number of relations.
num_channels : int
Number of conv channels.
in_dim : int
The dimension of input feature.
hidden_dim : int
The dimension of hidden layer.
num_class : int
Number of classification type.
num_layers : int
Length of hybrid metapath.
category : string
Type of predicted nodes.
norm : bool
If True, the adjacency matrix will be normalized.
identity : bool
If True, the identity matrix will be added to relation matrix set.
"""
@classmethod
def build_model_from_args(cls, args, hg):
if args.identity == True:
num_edge_type = len(hg.canonical_etypes) + 1
else:
num_edge_type = len(hg.canonical_etypes)
# add self-loop edge
return cls(num_edge_type=num_edge_type, num_channels=args.num_channels,
in_dim=args.hidden_dim, hidden_dim=args.hidden_dim, num_class=args.out_dim,
num_layers=args.num_layers, category=args.category, norm=args.norm_emd_flag, identity=args.identity)
def __init__(self, num_edge_type, num_channels, in_dim, hidden_dim, num_class, num_layers, category, norm, identity):
super(MHNF, self).__init__()
self.num_edge_type = num_edge_type
self.num_channels = num_channels
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.num_class = num_class
self.num_layers = num_layers
self.is_norm = norm
self.category = category
self.identity = identity
self.HSAF = HSAF(num_edge_type, self.num_channels, self.num_layers, self.in_dim, self.hidden_dim)
self.linear = nn.Linear(self.hidden_dim, self.num_class)
self.category_idx = None
self.A = None
self.h = None
def forward(self, hg, h=None):
with hg.local_scope():
#Ws = []
hg.ndata['h'] = h
# * =============== Extract edges in original graph ================
if self.category_idx is None:
self.A, h, self.category_idx = transform_relation_graph_list(hg, category=self.category,
identity=self.identity)
else:
g = dgl.to_homogeneous(hg, ndata='h')
h = g.ndata['h']
# g = dgl.to_homogeneous(hg, ndata='h')
#X_ = self.gcn(g, self.h)
A = self.A
final_representation = self.HSAF(A, h)
y = self.linear(final_representation)
return {self.category: y[self.category_idx]}
class HSAF(nn.Module):
r'''
HSAF: Hierarchical Semantic Attention Fusion
The HSAF model use two level attention mechanism to generate final representation
* Hop-level attention
.. math::
\alpha_{i, l}^{\Phi_{p}}=\sigma\left[\delta^{\Phi_{p}} \tanh \left(W^{\Phi_{p}} Z_{i, l}^{\Phi_{p}}\right)\right]
In which, :math:`\alpha_{i, l}^{\Phi_{p}}` is the importance of the information :math:`\left(Z_{i, l}^{\Phi_{p}}\right)`
of the l-th-hop neighbors of node i under the path :math:`\Phi_{p}`, and :math:`\delta^{\Phi_{p}}` represents the learnable matrix.
Then normalize :math:`\alpha_{i, l}^{\Phi_{p}}`
.. math::
\beta_{i, l}^{\Phi_{p}}=\frac{\exp \left(\alpha_{i, l}^{\Phi_{p}}\right)}{\sum_{j=1}^{L} \exp \left(\alpha_{i, j}^{\Phi_{p}}\right)}
Finally, we get hop-level attention representation in one hybrid metapath.
.. math::
Z_{i}^{\Phi_{p}}=\sum_{l=1}^{L} \beta_{l}^{\Phi_{p}} Z_{l}^{\Phi_{p}}
* Channel-level attention
It also can be seen as multi-head attention mechanism.
.. math::
\alpha_{i, \Phi_{p}}=\sigma\left[\delta \tanh \left(W Z_{i}^{\Phi_{p}}\right)\right.
Then normalize :math:`\alpha_{i, \Phi_{p}}`
.. math::
\beta_{i, \Phi_{p}}=\frac{\exp \left(\alpha_{i, \Phi_{p}}\right)}{\sum_{p^{\prime} \in P} \exp \left(\alpha_{\Phi_{p^{\prime}}}\right)}
Finally, we get final representation of every nodes.
.. math::
Z_{i}=\sum_{p \in P} \beta_{i, \Phi_{p}} Z_{i, \Phi_{p}}
'''
def __init__(self, num_edge_type, num_channels, num_layers, in_dim, hidden_dim):
super(HSAF, self).__init__()
self.num_channels = num_channels
self.num_layers = num_layers
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.HLHIA_layer = HLHIA(num_edge_type, self.num_channels, self.num_layers, self.in_dim, self.hidden_dim)
# * =============== channel attention operation ================
self.channel_attention = nn.Sequential(
nn.Linear(self.hidden_dim, 1),
nn.Tanh(),
nn.Linear(1, 1, bias=False),
nn.ReLU()
)
# * =============== layers attention operation ================
self.layers_attention = nn.ModuleList()
for i in range(num_channels):
self.layers_attention.append(nn.Sequential(
nn.Linear(self.hidden_dim, 1),
nn.Tanh(),
nn.Linear(1, 1, bias=False),
nn.ReLU()
))
def forward(self, A, h):
attention_list = self.HLHIA_layer(A, h)
channel_attention_list = []
for i in range(self.num_channels):
layer_level_feature_list = attention_list[i]
layer_attention = self.layers_attention[i]
for j in range(self.num_layers + 1):
layer_level_feature = layer_level_feature_list[j]
if j == 0:
layer_level_alpha = layer_attention(layer_level_feature)
else:
layer_level_alpha = th.cat((layer_level_alpha, layer_attention(layer_level_feature)), dim=-1)
layer_level_beta = th.softmax(layer_level_alpha, dim=-1)
channel_attention_list.append(
th.bmm(th.stack(layer_level_feature_list, dim=-1), layer_level_beta.unsqueeze(-1)).squeeze(-1))
for i in range(self.num_channels):
channel_level_feature = channel_attention_list[i]
if i == 0:
channel_level_alpha = self.channel_attention(channel_level_feature)
else:
channel_level_alpha = th.cat((channel_level_alpha, self.channel_attention(channel_level_feature)),
dim=-1)
channel_level_beta = th.softmax(channel_level_alpha, dim=-1)
channel_attention = th.bmm(th.stack(channel_attention_list, dim=-1), channel_level_beta.unsqueeze(-1)).squeeze(
-1)
return channel_attention
class HLHIA(nn.Module):
r"""
HLHIA: The Hop-Level Heterogeneous Information Aggregation
The l-hop representation :math:`Z_{l}` is generated by the original node feature through a graph conv
.. math::
Z_{l}^{\Phi_{p}} = \sigma\left[\left(D_{(l)}^{\Phi_{p}}\right)^{-1} A_{(l)}^{\Phi_{p}} h W^{\Phi_{p}}\right]
where :math:`\Phi_{p}` is the hybrid l-hop metapath and `\mathcal{h}` is the original node feature.
"""
def __init__(self, num_edge_type, num_channels, num_layers, in_dim, hidden_dim):
super(HLHIA, self).__init__()
self.num_channels = num_channels
self.in_dim = in_dim
self.hidden_dim = hidden_dim
layers = []
for i in range(num_layers):
if i == 0:
layers.append(HMAELayer(num_edge_type, num_channels, first=True))
else:
layers.append(HMAELayer(num_edge_type, num_channels, first=False))
self.layers = nn.ModuleList(layers)
self.gcn_list = nn.ModuleList()
for i in range(num_channels):
self.gcn_list.append(GraphConv(in_feats=self.in_dim, out_feats=hidden_dim, norm='none', activation=F.relu))
self.norm = EdgeWeightNorm(norm='right')
def forward(self, A, h):
layer_list = []
for i in range(len(self.layers)):
if i == 0:
H, W, first_adj = self.layers[i](A)
layer_list.append(first_adj)
layer_list.append(H)
else:
H, W, first_adj = self.layers[i](A, H)
layer_list.append(H)
# * =============== GCN Encoder ================
channel_attention_list = []
for i in range(self.num_channels):
gcn = self.gcn_list[i]
layer_attention_list = []
for j in range(len(layer_list)):
layer = layer_list[j][i]
layer = dgl.remove_self_loop(layer)
edge_weight = layer.edata['w_sum']
layer = dgl.add_self_loop(layer)
edge_weight = th.cat((edge_weight, th.full((layer.number_of_nodes(),), 1, device=layer.device)))
edge_weight = self.norm(layer, edge_weight)
layer_attention_list.append(gcn(layer, h, edge_weight=edge_weight))
channel_attention_list.append(layer_attention_list)
return channel_attention_list
class HMAELayer(nn.Module):
r"""
HMAE: Hybrid Metapath Autonomous Extraction
The method to generate l-hop hybrid adjacency matrix
.. math::
A_{(l)}=\Pi_{i=1}^{l} A_{i}
"""
def __init__(self, in_channels, out_channels, first=True):
super(HMAELayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.first = first
self.norm = EdgeWeightNorm(norm='right')
if self.first == True:
self.conv1 = GTConv(in_channels, out_channels, softmax_flag=False)
self.conv2 = GTConv(in_channels, out_channels, softmax_flag=False)
else:
self.conv1 = GTConv(in_channels, out_channels, softmax_flag=False)
def softmax_norm(self, H):
norm_H = []
for i in range(len(H)):
g = H[i]
g.edata['w_sum'] = self.norm(g, th.exp(g.edata['w_sum'])) # normalize the hybrid relationship matrix
norm_H.append(g)
return norm_H
def forward(self, A, H_=None):
if self.first == True:
result_A = self.softmax_norm(self.conv1(A))
result_B = self.softmax_norm(self.conv2(A))
W = [self.conv1.weight.detach(), self.conv2.weight.detach()]
else:
result_A = H_
result_B = self.conv1(A)
W = [self.conv1.weight.detach().detach()]
H = []
for i in range(len(result_A)):
g = dgl.adj_product_graph(result_A[i], result_B[i], 'w_sum')
H.append(g)
return H, W, result_A
class GTConv(nn.Module):
r"""
We conv each sub adjacency matrix :math:`A_{R_{i}}` to a combination adjacency matrix :math:`A_{1}`:
.. math::
A_{1} = conv\left(A ; W_{c}\right)=\sum_{R_{i} \in R} w_{R_{i}} A_{R_{i}}
where :math:`R_i \subseteq \mathcal{R}` and :math:`W_{c}` is the weight of each relation matrix
"""
def __init__(self, in_channels, out_channels, softmax_flag=True):
super(GTConv, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.weight = nn.Parameter(th.Tensor(out_channels, in_channels))
self.softmax_flag = softmax_flag
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.weight, std=0.01)
def forward(self, A):
if self.softmax_flag:
Filter = F.softmax(self.weight, dim=1)
else:
Filter = self.weight
num_channels = Filter.shape[0]
results = []
for i in range(num_channels):
for j, g in enumerate(A):
A[j].edata['w_sum'] = g.edata['w'] * Filter[i][j]
sum_g = dgl.adj_sum_graph(A, 'w_sum')
results.append(sum_g)
return results