-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_nc.py
282 lines (240 loc) · 10.2 KB
/
main_nc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from __future__ import division
from __future__ import print_function
import datetime
import json
import logging
import os
import pickle
import time
import dgl.graph_index
import numpy as np
import torch
from config import parser
from utils.data_utils import get_dataset
from utils.train_utils import get_dir_name, format_metrics
import scipy.sparse as sp
import dgl
import statistics
import random
from layers.ham_layers_v1 import HamGraphConvolution
from prettytable import PrettyTable
import sys
from torch_geometric.utils import get_laplacian,to_dense_adj,to_scipy_sparse_matrix,add_remaining_self_loops
import torch.nn.functional as F
from torch_geometric.utils.num_nodes import maybe_num_nodes
from torch_scatter import scatter_add
from utils.data_utils_lp import load_data
from utils.eval_utils import acc_f1
class HamGNN(torch.nn.Module):
def __init__(self, args, in_dim, hidden_dim, num_classes, num_layers):
super(HamGNN, self).__init__()
self.args = args
self.in_dim = in_dim
self.hidden_dim = hidden_dim
# self.out_dim = out_dim
self.num_classes = num_classes
self.num_layers = num_layers
self.dropout = args.dropout
self.linear_layer1 = torch.nn.Linear(in_dim, hidden_dim)
self.liner_layer2 = torch.nn.Linear(hidden_dim, num_classes, bias=False)
self.layers = torch.nn.ModuleList()
self.layers_bn = torch.nn.ModuleList()
# self.layers.append(HamGraphConvolution(hidden_dim,args))
for i in range(num_layers):
self.layers.append(HamGraphConvolution(hidden_dim,args))
# self.layers_bn.append(torch.nn.BatchNorm1d(hidden_dim))
# self.layers.append(HamGraphConvolution(hidden_dim, out_dim, num_classes, dropout, use_cuda))
# self.bn_input = torch.nn.BatchNorm1d(hidden_dim)
if not args.act:
self.act = lambda x: x
elif args.act == 'elu':
self.act = F.elu
else:
self.act = getattr(torch, args.act)
if args.n_classes > 2:
self.f1_average = 'micro'
else:
self.f1_average = 'binary'
def forward(self, features, adj):
# h = F.dropout(features, p=self.dropout, training=self.training)
h = features
h = self.linear_layer1(h)
# h = self.bn_input(h)
for i, layer in enumerate(self.layers):
h = layer(h,adj)
# h = self.layers_bn[i](h)
h = F.dropout(h, p=self.dropout, training=self.training)
h = self.act(h)
h = self.liner_layer2(h)
h = F.dropout(h, p=self.dropout, training=self.training)
return h
def compute_metrics(self, embeddings, data, split):
idx = data[f'idx_{split}']
output = F.log_softmax(embeddings[idx], dim=1)
loss = F.nll_loss(output, data['labels'][idx])
acc, f1 = acc_f1(output, data['labels'][idx], average=self.f1_average)
metrics = {'loss': loss, 'acc': acc, 'f1': f1}
return metrics
def set_seed(seed=7):
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def print_model_params(model):
print(model)
table = PrettyTable(["Modules", "Parameters"])
total_params = 0
ham_params = 0
for name, parameter in model.named_parameters():
if not parameter.requires_grad: continue
params = parameter.numel()
table.add_row([name, params])
total_params += params
print(table)
print(f"Total Trainable Params: {total_params}")
def get_optimizer(name, parameters, lr, weight_decay=0):
if name == 'sgd':
return torch.optim.SGD(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'rmsprop':
return torch.optim.RMSprop(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'adagrad':
return torch.optim.Adagrad(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'adam':
return torch.optim.Adam(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'adamax':
return torch.optim.Adamax(parameters, lr=lr, weight_decay=weight_decay)
else:
raise Exception("Unsupported optimizer: {}".format(name))
def test( model, data):
model.eval()
with torch.no_grad():
logits = model(data.x, data.edge_index,data.edge_weight)
accs = []
for _, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = logits[mask].max(1)[1]
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
accs.append(acc)
return accs
def train(args):
set_seed(args.seed)
args.device = 'cuda:' + str(args.cuda) if int(args.cuda) >= 0 else 'cpu'
opt = vars(args)
# Load data
data = load_data(args, os.path.join('./data', args.dataset))
args.n_nodes, args.feat_dim = data['features'].shape
args.n_classes = data['labels'].max().item() + 1
model = HamGNN(args, args.feat_dim, args.hidden, args.n_classes , args.num_layers).to(args.device)
parameters = [p for p in model.parameters() if p.requires_grad]
print_model_params(model)
print(str(model))
# lap_sym = get_laplacian(data.edge_index, data.edge_weight,normalization='sym')
# lap_edge_index, lap_edge_weight = get_laplacian(data.edge_index, edge_weight=data.edge_weight, normalization="sym",
# num_nodes=data.x.shape[0])
# lap = to_scipy_sparse_matrix(lap_edge_index, edge_attr=lap_edge_weight)
# lap = scipy_sparse_to_torch_sparse(lap)
# print("laplacian shape: ", lap.shape)
#
# print("num of train samples: ", len(torch.nonzero(data.train_mask, as_tuple=True)[0]))
# print("num of val samples: ", len(torch.nonzero(data.val_mask, as_tuple=True)[0]))
# print("num of test samples: ", len(torch.nonzero(data.test_mask, as_tuple=True)[0]))
optimizer = get_optimizer(opt['optimizer'], parameters, lr=opt['lr'], weight_decay=opt['decay'])
criterion = torch.nn.CrossEntropyLoss()
best_time = best_epoch = train_acc = val_acc = test_acc=counter = 0
# if data.edge_weight is None:
# data.edge_weight = torch.ones((data.edge_index.size(1),), device=data.edge_index.device)
data['features'] = data['features'].to(args.device)
data['adj_train_norm'] = data['adj_train_norm'].to(args.device)
data['labels'] = data['labels'].to(args.device)
for epoch in range(1, opt['epoch']):
start_time = time.time()
model.train()
optimizer.zero_grad()
out = model(data['features'], data['adj_train_norm'])
# loss = criterion(out[data.train_mask], data.y[data.train_mask])
train_metrics = model.compute_metrics(out, data, 'train')
train_metrics['loss'].backward()
optimizer.step()
train_loss = train_metrics['loss']
tmp_train_acc = train_metrics['acc']
val_metrics = model.compute_metrics(out, data, 'val')
tmp_val_acc = val_metrics['acc']
test_metrics = model.compute_metrics(out, data, 'test')
tmp_test_acc = test_metrics['acc']
print('Epoch: {:04d}'.format(epoch),
'loss_train: {:.4f}'.format(train_loss.item()),
'acc_train: {:.4f}'.format(tmp_train_acc),
'acc_val: {:.4f}'.format(tmp_val_acc),
'acc_test: {:.4f}'.format(tmp_test_acc),
'time: {:.4f}s'.format(time.time() - start_time))
if tmp_val_acc > val_acc:
best_time = time.time() - start_time
best_epoch = epoch
train_acc = tmp_train_acc
val_acc = tmp_val_acc
test_acc = tmp_test_acc
counter = 0
if args.save:
# mkdir if not exist
if not os.path.exists('./model_saved'):
os.mkdir('./model_saved')
model_name = './model_saved/' + args.dataset + '_' + str(args.odemap) + '_' + str(args.num_layers) + '_' + str(args.agg) + '_' + str(args.hidden) + '_' + '.pt'
torch.save(model.state_dict(),model_name )
else:
counter += 1
if counter == args.patience:
print('Early stopping!')
break
print("Optimization Finished!")
print("Best Epoch: {:04d}".format(best_epoch),
"train_acc= {:.4f}".format(train_acc),
"val_acc= {:.4f}".format(val_acc),
"test_acc= {:.4f}".format(test_acc),
"time= {:.4f}s".format(best_time))
if args.save:
#load model and calculate dirichlet energy
model.load_state_dict(torch.load(model_name))
return test_acc
if __name__ == '__main__':
args = parser.parse_args()
test_acc_list = []
# create log file
if not os.path.exists('./log'):
os.makedirs('./log')
# add time stamp to log file name to avoid overwriting
time_stamp = time.strftime("%H%M%S", time.localtime())
log_file = './log/' + args.dataset + '_' + str(args.odemap) + '_' + str(args.num_layers) + '_' + str(args.agg) + '_' + time_stamp + '.txt'
# write command line args to log file
with open(log_file, 'a') as f:
f.write(' '.join(sys.argv))
f.write('\n')
for i in range(args.runtime):
test_acc = train(args)
test_acc_list.append(test_acc)
args.seed += 1
# print i and test acc
print("=====================================")
print("runtime: ", i)
print("test_acc: ", test_acc)
# write log
with open(log_file, 'a') as f:
f.write('runtime: ' + str(i) + ' test_acc: ' + str(test_acc) + ' ')
f.write('\n')
print("test_acc_list: ", test_acc_list)
print("mean: ", np.mean(test_acc_list))
print("std: ", np.std(test_acc_list))
# write log
with open(log_file, 'a') as f:
f.write('test_acc_list: ' + str(test_acc_list) + ' ')
f.write('\n')
f.write('mean: ' + str(np.mean(test_acc_list)) + ' ')
f.write('\n')
f.write('std: ' + str(np.std(test_acc_list)) + ' ')
f.write('\n')
#dump args dict to log
json.dump(vars(args), f, indent=4)
# change saved log file name to include mean
os.rename(log_file, log_file[:-4] + '_mean_' + str(np.mean(test_acc_list)) + '.txt')