-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgenerate_data.py
180 lines (138 loc) · 6.1 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import random
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from utils import *
model_zoo = {'deit_tiny': 'deit_tiny_patch16_224',
'deit_small': 'deit_small_patch16_224',
'deit_base': 'deit_base_patch16_224',
'swin_tiny': 'swin_tiny_patch4_window7_224',
'swin_small': 'swin_small_patch4_window7_224',
}
class AttentionMap:
def __init__(self, module):
self.hook = module.register_forward_hook(self.hook_fn)
def hook_fn(self, module, input, output):
self.feature = output
def remove(self):
self.hook.remove()
def generate_data(args):
args.batch_size = args.calib_batchsize
# Load pretrained model
p_model = build_model(model_zoo[args.model], Pretrained=True)
# Hook the attention
hooks = []
if 'swin' in args.model:
for m in p_model.layers:
for n in range(len(m.blocks)):
hooks.append(AttentionMap(m.blocks[n].attn.matmul2))
else:
for m in p_model.blocks:
hooks.append(AttentionMap(m.attn.matmul2))
# Init Gaussian noise
img = torch.randn((args.batch_size, 3, 224, 224)).cuda()
img.requires_grad = True
# Init optimizer
args.lr = 0.25 if 'swin' in args.model else 0.20
optimizer = optim.Adam([img], lr=args.lr, betas=[0.5, 0.9], eps=1e-8)
# Set pseudo labels
pred = torch.LongTensor([random.randint(0, 999) for _ in range(args.batch_size)]).to('cuda')
var_pred = random.uniform(2500, 3000) # for batch_size 32
criterion = nn.CrossEntropyLoss()
# Train for two epochs
for lr_it in range(2):
if lr_it == 0:
iterations_per_layer = 500
lim = 15
else:
iterations_per_layer = 500
lim = 30
lr_scheduler = lr_cosine_policy(args.lr, 100, iterations_per_layer)
with tqdm(range(iterations_per_layer)) as pbar:
for itr in pbar:
pbar.set_description(f"Epochs {lr_it+1}/{2}")
# Learning rate scheduling
lr_scheduler(optimizer, itr, itr)
# Apply random jitter offsets (from DeepInversion[1])
# [1] Yin, Hongxu, et al. "Dreaming to distill: Data-free knowledge transfer via deepinversion.", CVPR2020.
off = random.randint(-lim, lim)
img_jit = torch.roll(img, shifts=(off, off), dims=(2, 3))
# Flipping
flip = random.random() > 0.5
if flip:
img_jit = torch.flip(img_jit, dims=(3,))
# Forward pass
optimizer.zero_grad()
p_model.zero_grad()
output = p_model(img_jit)
loss_oh = criterion(output, pred)
loss_tv = torch.norm(get_image_prior_losses(img_jit) - var_pred)
loss_entropy = 0
for itr_hook in range(len(hooks)):
# Hook attention
attention = hooks[itr_hook].feature
attention_p = attention.mean(dim=1)[:, 1:, :]
sims = torch.cosine_similarity(attention_p.unsqueeze(1), attention_p.unsqueeze(2), dim=3)
# Compute differential entropy
kde = KernelDensityEstimator(sims.view(args.batch_size, -1))
start_p = sims.min().item()
end_p = sims.max().item()
x_plot = torch.linspace(start_p, end_p, steps=10).repeat(args.batch_size, 1).cuda()
kde_estimate = kde(x_plot)
dif_entropy_estimated = differential_entropy(kde_estimate, x_plot)
loss_entropy -= dif_entropy_estimated
# Combine loss
total_loss = loss_entropy + 1.0 * loss_oh + 0.05 * loss_tv
# Do image update
total_loss.backward()
optimizer.step()
# Clip color outliers
img.data = clip(img.data)
return img.detach()
def differential_entropy(pdf, x_pdf):
# pdf is a vector because we want to perform a numerical integration
pdf = pdf + 1e-4
f = -1 * pdf * torch.log(pdf)
# Integrate using the composite trapezoidal rule
ans = torch.trapz(f, x_pdf, dim=-1).mean()
return ans
def get_image_prior_losses(inputs_jit):
# Compute total variation regularization loss
diff1 = inputs_jit[:, :, :, :-1] - inputs_jit[:, :, :, 1:]
diff2 = inputs_jit[:, :, :-1, :] - inputs_jit[:, :, 1:, :]
diff3 = inputs_jit[:, :, 1:, :-1] - inputs_jit[:, :, :-1, 1:]
diff4 = inputs_jit[:, :, :-1, :-1] - inputs_jit[:, :, 1:, 1:]
loss_var_l2 = torch.norm(diff1) + torch.norm(diff2) + torch.norm(diff3) + torch.norm(diff4)
return loss_var_l2
def clip(image_tensor, use_fp16=False):
# Adjust the input based on mean and variance
if use_fp16:
mean = np.array([0.485, 0.456, 0.406], dtype=np.float16)
std = np.array([0.229, 0.224, 0.225], dtype=np.float16)
else:
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
for c in range(3):
m, s = mean[c], std[c]
image_tensor[:, c] = torch.clamp(image_tensor[:, c], -m / s, (1 - m) / s)
#image_tensor[:, c] = torch.clamp(image_tensor[:, c], 0, 1)
return image_tensor
def lr_policy(lr_fn):
def _alr(optimizer, iteration, epoch):
lr = lr_fn(iteration, epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return _alr
def lr_cosine_policy(base_lr, warmup_length, epochs):
def _lr_fn(iteration, epoch):
if epoch < warmup_length:
lr = base_lr * (epoch + 1) / warmup_length
else:
e = epoch - warmup_length
es = epochs - warmup_length
lr = 0.5 * (1 + np.cos(np.pi * e / es)) * base_lr
return lr
return lr_policy(_lr_fn)