-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
582 lines (468 loc) · 24.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
#!/usr/bin/python3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from sklearn.metrics import average_precision_score
from torch.utils.data import DataLoader
from utils.eval_tuple import eval_tuple
from einops import rearrange, reduce, repeat
def Identity(x):
return x
class BoxOffsetIntersection(nn.Module):
def __init__(self, dim):
super(BoxOffsetIntersection, self).__init__()
self.dim = dim
self.layer1 = nn.Linear(self.dim, self.dim)
self.layer2 = nn.Linear(self.dim, self.dim)
nn.init.xavier_uniform_(self.layer1.weight)
nn.init.xavier_uniform_(self.layer2.weight)
def forward(self, embeddings):
layer1_act = F.relu(self.layer1(embeddings))
layer1_mean = torch.mean(layer1_act, dim=1)
gate = torch.sigmoid(self.layer2(layer1_mean))
offset, _ = torch.min(embeddings, dim=1)
return offset * gate
class CenterIntersection(nn.Module):
def __init__(self, dim):
super(CenterIntersection, self).__init__()
self.dim = dim
self.layer1 = nn.Linear(self.dim, self.dim)
self.layer2 = nn.Linear(self.dim, self.dim)
nn.init.xavier_uniform_(self.layer1.weight)
nn.init.xavier_uniform_(self.layer2.weight)
def forward(self, embeddings):
layer1_act = F.relu(self.layer1(embeddings))
attention = F.softmax(self.layer2(layer1_act), dim=1)
embedding = torch.sum(attention * embeddings, dim=1).unsqueeze(1)
return embedding
class Attention(nn.Module):
def __init__(self, dim):
super(Attention, self).__init__()
self.dim = dim
self.Q = nn.Linear(self.dim, self.dim, bias=False)
self.K = nn.Linear(self.dim, self.dim, bias=False)
self.V = nn.Linear(self.dim, self.dim, bias=False)
nn.init.xavier_uniform_(self.Q.weight)
nn.init.xavier_uniform_(self.K.weight)
nn.init.xavier_uniform_(self.V.weight)
def forward(self, embeddings):
query = self.Q(embeddings)
key = self.K(embeddings)
value = self.V(embeddings)
key_trans = torch.transpose(key, -2, -1)
attn = torch.matmul(query, key_trans) / torch.sqrt(torch.tensor([self.dim]).cuda())
attn = torch.where(attn==0, torch.tensor([1e-10]).cuda(), attn)
attn = torch.softmax(attn, dim=-1)
embeddings = torch.matmul(attn, value)
return embeddings
class TagBoxAttnInter(nn.Module):
def __init__(self, dim):
super(TagBoxAttnInter, self).__init__()
self.dim = dim
self.layer1 = nn.Linear(self.dim*2, self.dim)
self.layer2 = nn.Linear(self.dim, self.dim)
nn.init.xavier_uniform_(self.layer1.weight)
nn.init.xavier_uniform_(self.layer2.weight)
def forward(self, embeddings, item):
item = repeat(item, 'b ip d -> b ip tp d', tp=embeddings.size()[-2])
input = rearrange([embeddings, item], 'n b ip tp d -> b ip tp (n d)')
layer1_act = F.relu(self.layer1(input))
attention = F.softmax(self.layer2(layer1_act), dim=-1)
embedding = torch.sum(attention * embeddings, dim=-2)
return embedding
class InterestBoxAggerator(nn.Module):
def __init__(self, dim, interest_num):
super(InterestBoxAggerator, self).__init__()
self.dim = dim
self.interest_num = interest_num
self.layer1 = nn.Linear(self.dim, self.dim, bias=False)
self.layer2 = nn.Linear(self.dim, self.interest_num, bias=False)
nn.init.xavier_uniform_(self.layer1.weight)
nn.init.xavier_uniform_(self.layer2.weight)
def forward(self, embeddings):
tmp = self.layer2(F.relu(self.layer1(embeddings)))
weights = torch.softmax(tmp, dim=1)
embeddings = torch.matmul(weights.transpose(-1, -2), embeddings)
return embeddings
class Model(nn.Module):
def __init__ (self, args, n_params):
super(Model, self).__init__()
self.dim = args.dim
self.nitem = n_params['n_items']
self.ntag = n_params['n_tags']
self.nentity = n_params['n_entities']
self.nrelation = n_params['n_relations']
self.nuser = n_params['n_users']
self.ninterest = args.interest_num
self.args = args
self.gamma = nn.Parameter(
torch.Tensor([args.gamma]),
requires_grad=False
)
self.epsilon = 2.0
self.embedding_range = nn.Parameter(
torch.Tensor([(self.gamma.item() + self.epsilon) / self.dim]),
requires_grad=False
)
activation, cen = eval_tuple(args.box_mode)
self.cen = cen
if activation == 'none':
self.func = Identity
elif activation == 'relu':
self.func = F.relu
elif activation == 'softplus':
self.func = F.softplus
elif activation == 'abs1':
self.func = torch.abs
self.entity_dim = self.dim
self.tag_dim = self.dim
self.relation_dim = self.dim
self.user_embedding = nn.Embedding(self.nuser, self.entity_dim)
nn.init.uniform_(
tensor=self.user_embedding.weight,
a=-self.embedding_range.item(),
b=self.embedding_range.item()
)
self.item_embedding = nn.Embedding(self.nitem+1, self.entity_dim, padding_idx=self.nitem)
nn.init.uniform_(
tensor=self.item_embedding.weight[:-1],
a=-self.embedding_range.item(),
b=self.embedding_range.item()
)
self.tag_center_embedding = nn.Embedding(self.ntag+1, self.tag_dim, padding_idx=self.ntag)
nn.init.uniform_(
tensor=self.tag_center_embedding.weight[:-1],
a=-self.embedding_range.item(),
b=self.embedding_range.item()
)
self.tag_offset_embedding = nn.Embedding(self.ntag+1, self.tag_dim, padding_idx=self.ntag)
nn.init.uniform_(
tensor=self.tag_offset_embedding.weight[:-1],
a=0.,
b=self.embedding_range.item()
)
self.interest_center_embedding = nn.Embedding(self.nitem+1, self.tag_dim, padding_idx=self.nitem)
nn.init.uniform_(
tensor=self.interest_center_embedding.weight[:-1],
a=-self.embedding_range.item(),
b=self.embedding_range.item()
)
self.interest_offset_embedding = nn.Embedding(self.nitem+1, self.tag_dim, padding_idx=self.nitem)
nn.init.uniform_(
tensor=self.interest_offset_embedding.weight[:-1],
a=0.,
b=self.embedding_range.item()
)
self.relation_center_embedding = nn.Embedding(self.nrelation+1, self.relation_dim, padding_idx=self.nrelation)
nn.init.uniform_(
tensor=self.relation_center_embedding.weight[:-1],
a=-self.embedding_range.item(),
b=self.embedding_range.item()
)
self.relation_offset_embedding = nn.Embedding(self.nrelation+1, self.entity_dim, padding_idx=self.nrelation)
nn.init.uniform_(
tensor=self.relation_offset_embedding.weight[:-1],
a=-self.embedding_range.item(),
b=self.embedding_range.item()
)
self.tag_center_attention = Attention(self.entity_dim)
self.tag_offset_attention = Attention(self.entity_dim)
self.tag_center_net = CenterIntersection(self.entity_dim)
self.tag_offset_net = BoxOffsetIntersection(self.entity_dim)
self.tag_center_attn_inter = TagBoxAttnInter(self.dim)
self.tag_offset_attn_inter = TagBoxAttnInter(self.dim)
self.interest_center_attention = Attention(self.entity_dim)
self.interest_offset_attention = Attention(self.entity_dim)
self.interest_center_net = InterestBoxAggerator(self.entity_dim, self.ninterest)
self.interest_offset_net = InterestBoxAggerator(self.entity_dim, self.ninterest)
def boxes_base_inter (self, center_embeddings, offset_embeddings):
max_points = center_embeddings + offset_embeddings
min_points = center_embeddings - offset_embeddings
max_point = torch.min(max_points, dim = -2).values
min_point = torch.max(min_points, dim = -2).values
center_embedding = (max_point + min_point)/2
offset_embedding = self.func(max_point - min_point)
return center_embedding.unsqueeze(1), offset_embedding.unsqueeze(1)
def point_box_logit (self, point, box):
box_center_embedding, box_offset_embedding = box
delta = (point - box_center_embedding).abs()
distance_out = self.func(delta - box_offset_embedding)
distance_in = torch.min(delta, box_offset_embedding)
logit = self.gamma - torch.norm(distance_out, p=1, dim=-1) - self.cen * torch.norm(distance_in, p=1, dim=-1)
return logit
def box_box_logit (self, box1, box2, relation):
box1_center, box1_offset = box1
box2_center, box2_offset = box2
relation_center, relation_offset = relation
distance_center = box1_center - (box2_center + relation_center)
distance_offset = box1_offset - (box2_offset + relation_offset)
logit_center = self.gamma - torch.norm(distance_center, p=1, dim=-1)
logit_offset = self.gamma - torch.norm(distance_offset, p=1, dim=-1)
return (logit_center+logit_offset)/2
def point_point_logit (self, point1, point2, relation):
distance = point1 - (point2 + relation)
logit = self.gamma - torch.norm(distance, p=1, dim=-1)
return logit
def point_point_logit2 (self, point1, point2):
distance = point1 - point2
logit = self.gamma - torch.norm(distance, p=1, dim=-1)
return logit
def forward (self, sample, mode, flag='train'):
if mode in ['IRT-item', 'IRT-tag', 'IRI', 'TRT']:
positive_logit, negative_logit = self.forward_pretrain(sample, mode)
elif mode == 'pretrain_inter':
positive_logit, negative_logit = self.forward_pretrain_inter(sample)
elif mode == 'train':
positive_logit, negative_logit = self.forward_recommender(sample, flag)
else:
raise ValueError('mode %s not supported' % mode)
return positive_logit, negative_logit
def forward_pretrain (self, sample, mode):
positive_sample, negative_sample = sample
if self.args.cuda:
positive_sample = positive_sample.cuda()
negative_sample = negative_sample.cuda()
if mode == 'IRT-item':
item = self.item_embedding(positive_sample[:,0]).unsqueeze(1)
relation_center = self.relation_center_embedding(positive_sample[:,1]).unsqueeze(1)
relation_offset = self.relation_offset_embedding(positive_sample[:,1]).unsqueeze(1)
tag_center = self.tag_center_embedding(positive_sample[:,2]).unsqueeze(1)
tag_offset = self.func(self.tag_offset_embedding(positive_sample[:,2]).unsqueeze(1))
item_neg = self.item_embedding(negative_sample)
tag_center = tag_center + relation_center
tag_offset = self.func(tag_offset + relation_offset)
positive_logit = self.point_box_logit(item, (tag_center, tag_offset))
negative_logit = self.point_box_logit(item_neg, (tag_center, tag_offset))
elif mode == 'IRT-tag':
item = self.item_embedding(positive_sample[:,0]).unsqueeze(1)
relation_center = self.relation_center_embedding(positive_sample[:,1]).unsqueeze(1)
relation_offset = self.relation_offset_embedding(positive_sample[:,1]).unsqueeze(1)
tag_center = self.tag_center_embedding(positive_sample[:,2]).unsqueeze(1)
tag_offset = self.func(self.tag_offset_embedding(positive_sample[:,2]).unsqueeze(1))
tag_center_neg = self.tag_center_embedding(negative_sample)
tag_offset_neg = self.func(self.tag_offset_embedding(negative_sample))
tag_center = tag_center + relation_center
tag_offset = self.func(tag_offset + relation_offset)
tag_center_neg = tag_center_neg + relation_center
tag_offset_neg = self.func(tag_center_neg + relation_offset)
positive_logit = self.point_box_logit(item, (tag_center, tag_offset))
negative_logit = self.point_box_logit(item, (tag_center_neg, tag_offset_neg))
elif mode == 'IRI':
head = self.item_embedding(positive_sample[:,0]).unsqueeze(1)
relation = self.relation_center_embedding(positive_sample[:,1]).unsqueeze(1)
tail = self.item_embedding(positive_sample[:,2]).unsqueeze(1)
tail_neg = self.item_embedding(negative_sample)
positive_logit = self.point_point_logit(head, tail, relation)
negative_logit = self.point_point_logit(head, tail_neg, relation)
else:
head_center = self.tag_center_embedding(positive_sample[:,0]).unsqueeze(1)
head_offset = self.func(self.tag_offset_embedding(positive_sample[:,0]).unsqueeze(1))
relation_center = self.relation_center_embedding(positive_sample[:,1]).unsqueeze(1)
relation_offset = self.relation_offset_embedding(positive_sample[:,1]).unsqueeze(1)
tail_center = self.tag_center_embedding(positive_sample[:,2]).unsqueeze(1)
tail_offset = self.func(self.tag_offset_embedding(positive_sample[:,2]).unsqueeze(1))
tail_center_neg = self.tag_center_embedding(negative_sample)
tail_offset_neg = self.func(self.tag_offset_embedding(negative_sample))
positive_logit = self.box_box_logit((head_center, head_offset), (tail_center, tail_offset), (relation_center, relation_offset))
negative_logit = self.box_box_logit((head_center, head_offset), (tail_center_neg, tail_offset_neg), (relation_center, relation_offset))
return positive_logit, negative_logit
def forward_pretrain_inter (self, sample):
positive_sample, negative_sample, relations, tags = sample
if self.args.cuda:
positive_sample = positive_sample.cuda()
negative_sample = negative_sample.cuda()
relations = relations.cuda()
tags = tags.cuda()
positive_item = self.item_embedding(positive_sample.squeeze()).unsqueeze(1)
negative_item = self.item_embedding(negative_sample)
relations_center = self.relation_center_embedding(relations)
relations_offset = self.relation_offset_embedding(relations)
tags_center = self.tag_center_embedding(tags) + relations_center
tags_offset = self.func(self.func(self.tag_offset_embedding(tags)) + relations_offset)
# neural network intersection
interest_center = self.tag_center_net(tags_center)
interest_offset = self.func(self.tag_offset_net(tags_offset)).unsqueeze(1)
# M-M intersection
# interest_center, interest_offset = self.boxes_base_inter(tags_center, tags_offset)
positive_logit = self.point_box_logit(positive_item, (interest_center, interest_offset))
negative_logit = self.point_box_logit(negative_item, (interest_center, interest_offset))
with torch.no_grad():
self.interest_center_embedding.weight.requires_grad_ = False
self.interest_offset_embedding.weight.requires_grad_ = False
self.interest_center_embedding.weight[positive_sample] = interest_center
self.interest_offset_embedding.weight[positive_sample] = interest_offset
self.interest_center_embedding.weight.requires_grad_ = True
self.interest_offset_embedding.weight.requires_grad_ = True
return positive_logit, negative_logit
def forward_recommender (self, sample, flag):
user, items, relations, tags, positive_sample, negative_sample = sample
if self.args.cuda:
user = user.cuda()
items = items.cuda()
relations = relations.cuda()
tags = tags.cuda()
positive_sample = positive_sample.cuda()
negative_sample = negative_sample.cuda()
positive_item = self.item_embedding(positive_sample.squeeze()).unsqueeze(1)
negative_item = self.item_embedding(negative_sample)
base_interests_center = self.interest_center_embedding(items)
base_interests_offset = self.func(self.interest_offset_embedding(items))
bias = self.item_embedding(items)
relations_center = self.relation_center_embedding(relations)
relations_offset = self.relation_offset_embedding(relations)
tags_center = self.tag_center_embedding(tags) + relations_center
tags_offset = self.func(self.func(self.tag_offset_embedding(tags)) + relations_offset)
attn_interests_center = self.tag_center_attn_inter(tags_center, bias)
attn_interests_offset = self.tag_offset_attn_inter(tags_offset, bias)
interests_center = (base_interests_center + attn_interests_center) / 2
interests_offset = (base_interests_offset + attn_interests_offset) / 2
num = base_interests_center.sum(-1).bool().int().sum(-1).unsqueeze(-1).unsqueeze(-1)
num = torch.where(num==0, torch.tensor([1]).cuda(), num)
user_center = interests_center.sum(dim=1).unsqueeze(1)/num
user_offset = interests_offset.sum(dim=1).unsqueeze(1)/num
user_positive_logit = self.point_box_logit(positive_item, (user_center, user_offset))
user_negative_logit = self.point_box_logit(negative_item, (user_center, user_offset))
return user_positive_logit, user_negative_logit
@staticmethod
def train_step (model, optimizer, train_iterator, args, train_mode):
model.train()
optimizer.zero_grad()
if train_mode == 'pretrain':
positive_sample, negative_sample, subsampling_weight, mode = next(train_iterator)
input = (positive_sample, negative_sample)
elif train_mode == 'pretrain_inter':
positive_sample, negative_sample, relations, tags, subsampling_weight = next(train_iterator)
input = (positive_sample, negative_sample, relations, tags)
mode = 'pretrain_inter'
elif train_mode == 'train':
user, items, relations, tags, positive_sample, negative_sample, subsampling_weight = next(train_iterator)
input = (user, items, relations, tags, positive_sample, negative_sample)
mode = 'train'
else:
assert False, "Wrong train mode."
if args.cuda:
subsampling_weight = subsampling_weight.cuda()
positive_logit, negative_logit = model(input, mode)
negative_score = F.logsigmoid(-negative_logit).mean(dim=1)
positive_score = F.logsigmoid(positive_logit)
positive_sample_loss = - (subsampling_weight * positive_score).sum()
negative_sample_loss = - (subsampling_weight * negative_score).sum()
positive_sample_loss /= subsampling_weight.sum()
negative_sample_loss /= subsampling_weight.sum()
loss = (positive_sample_loss + negative_sample_loss)/2
loss.backward()
optimizer.step()
if train_mode == 'pretrain':
log = {
'pretrain_positive_sample_loss': positive_sample_loss.item(),
'pretrain_negative_sample_loss': negative_sample_loss.item(),
'loss': loss.item(),
}
elif train_mode == 'pretain_inter':
log = {
'pretrain_inter_positive_sample_loss': positive_sample_loss.item(),
'pretrain_inter_negative_sample_loss': negative_sample_loss.item(),
'loss': loss.item(),
}
else:
log = {
'train_positive_sample_loss': positive_sample_loss.item(),
'train_negative_sample_loss': negative_sample_loss.item(),
'loss': loss.item(),
}
return log
@staticmethod
def test_step (model, test_iterator, args, test_mode, test_user_set=None):
def dcg_at_k(r, k, method=1):
"""Score is discounted cumulative gain (dcg)
Relevance is positive real values. Can use binary
as the previous methods.
Returns:
Discounted cumulative gain
"""
r = np.asfarray(r)[:k]
if r.size:
if method == 0:
return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1)))
elif method == 1:
return np.sum(r / np.log2(np.arange(2, r.size + 2)))
else:
raise ValueError('method must be 0 or 1.')
return 0.
def ndcg_at_k(r, k, ground_truth, method=1):
"""Score is normalized discounted cumulative gain (ndcg)
Relevance is positive real values. Can use binary
as the previous methods.
Returns:
Normalized discounted cumulative gain
Low but correct defination
"""
GT = set(ground_truth)
if len(GT) > k :
sent_list = [1.0] * k
else:
sent_list = [1.0]*len(GT) + [0.0]*(k-len(GT))
dcg_max = dcg_at_k(sent_list, k, method)
if not dcg_max:
return 0.
return dcg_at_k(r, k, method) / dcg_max
model.eval()
logs = []
with torch.no_grad():
for data in tqdm(test_iterator):
if test_mode == 'pretrain':
positive_sample, negative_sample, filter_bias, mode = data
input = (positive_sample, negative_sample)
elif test_mode == 'pretrain_inter':
positive_sample, negative_sample, relations, tags, filter_bias = data
mode = 'pretrain_inter'
input = (positive_sample, negative_sample, relations, tags)
elif test_mode == 'train':
user, items, relations, tags, positive_sample, negative_sample, filter_bias = data
mode = 'train'
input = (user, items, relations, tags, positive_sample, negative_sample)
if args.cuda:
positive_sample = positive_sample.cuda()
filter_bias = filter_bias.cuda()
batch_size = positive_sample.size(0)
_, score = model(input, mode, flag='test')
score = score/100 + filter_bias
argsort = torch.argsort(score, dim = 1, descending=True)
if test_mode == 'pretrain' or test_mode == 'pretrain_inter':
if test_mode == 'pretrain':
positive_arg = positive_sample[:, 2]
else:
positive_arg = positive_sample
for i in range(batch_size):
ranking = (argsort[i, :] == positive_arg[i]).nonzero()
assert ranking.size(0) == 1
ranking = 1 + ranking.item()
logs.append({
'MRR': 1.0/ranking,
'MR': float(ranking),
'HITS@1': 1.0 if ranking <= 1 else 0.0,
'HITS@3': 1.0 if ranking <= 3 else 0.0,
'HITS@10': 1.0 if ranking <= 10 else 0.0,
'HITS@20': 1.0 if ranking <= 20 else 0.0
})
else:
user = user.tolist()
argsort = argsort[:, :20].int().tolist()
for i in range(batch_size):
positive_item = test_user_set[user[i]]
flag_list = [1 if item in positive_item else 0 for item in argsort[i]]
num_positive = len(positive_item)
logs.append({
'recall@20': sum(flag_list) / num_positive,
'NDCG': ndcg_at_k(flag_list, 20, positive_item)
})
metrics = {}
for metric in logs[0].keys():
metrics[metric] = sum([log[metric] for log in logs])/len(logs)
return metrics