-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathkge_trainer.py
312 lines (253 loc) · 12.6 KB
/
kge_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import os
import pickle
import logging
import numpy as np
from collections import defaultdict as ddict
from dataloader import get_task_dataset, get_task_dataset_entire, \
TrainDataset, TestDataset, TestDataset_Entire
from kge_model import KGEModel
class KGETrainer():
def __init__(self, args, data):
self.args = args
self.data = data
if args.setting == 'Collection':
train_dataset, valid_dataset, test_dataset, nrelation, nentity = get_task_dataset_entire(data, args)
elif args.setting == 'Isolation':
train_dataset, valid_dataset, test_dataset, nrelation, nentity = get_task_dataset(data, args)
self.nentity = nentity
self.nrelation = nrelation
# embedding
embedding_range = torch.Tensor([(args.gamma + args.epsilon) / args.hidden_dim])
if args.model in ['RotatE', 'ComplEx']:
self.entity_embedding = torch.zeros(self.nentity, args.hidden_dim * 2).to(args.gpu).requires_grad_()
else:
self.entity_embedding = torch.zeros(self.nentity, args.hidden_dim).to(args.gpu).requires_grad_()
nn.init.uniform_(
tensor=self.entity_embedding,
a=-embedding_range.item(),
b=embedding_range.item()
)
if args.model in ['ComplEx']:
self.relation_embedding = torch.zeros(self.nrelation, args.hidden_dim * 2).to(args.gpu).requires_grad_()
else:
self.relation_embedding = torch.zeros(self.nrelation, args.hidden_dim).to(args.gpu).requires_grad_()
nn.init.uniform_(
tensor=self.relation_embedding,
a=-embedding_range.item(),
b=embedding_range.item()
)
# dataloader
self.train_dataloader = DataLoader(
train_dataset,
batch_size = args.batch_size,
shuffle = True,
collate_fn = TrainDataset.collate_fn
)
if args.setting == 'Collection':
self.valid_dataloader = DataLoader(
valid_dataset,
batch_size=args.test_batch_size,
collate_fn=TestDataset_Entire.collate_fn
)
self.test_dataloader = DataLoader(
test_dataset,
batch_size=args.test_batch_size,
collate_fn=TestDataset_Entire.collate_fn
)
elif args.setting == 'Isolation':
self.valid_dataloader = DataLoader(
valid_dataset,
batch_size=args.test_batch_size,
collate_fn=TestDataset.collate_fn
)
self.test_dataloader = DataLoader(
test_dataset,
batch_size = args.test_batch_size,
collate_fn=TestDataset.collate_fn
)
# model
self.kge_model = KGEModel(args, args.model)
self.optimizer = torch.optim.Adam(
[{'params': self.entity_embedding},
{'params': self.relation_embedding}], lr=args.lr
)
def before_test_load(self):
state = torch.load(os.path.join(self.args.state_dir, self.args.name + '.best'),
map_location=self.args.gpu)
self.relation_embedding = state['rel_emb']
self.entity_embedding = state['ent_emb']
def write_training_loss(self, loss, e):
self.args.writer.add_scalar("training/loss", loss, e)
def write_evaluation_result(self, results, e):
self.args.writer.add_scalar("evaluation/mrr", results['mrr'], e)
self.args.writer.add_scalar("evaluation/hits10", results['hits@10'], e)
self.args.writer.add_scalar("evaluation/hits5", results['hits@5'], e)
self.args.writer.add_scalar("evaluation/hits1", results['hits@1'], e)
def save_checkpoint(self, e):
state = {'rel_emb': self.relation_embedding,
'ent_emb': self.entity_embedding}
# delete previous checkpoint
for filename in os.listdir(self.args.state_dir):
if self.args.name in filename.split('.') and os.path.isfile(os.path.join(self.args.state_dir, filename)):
os.remove(os.path.join(self.args.state_dir, filename))
# save current checkpoint
torch.save(state, os.path.join(self.args.state_dir,
self.args.name + '.' + str(e) + '.ckpt'))
def save_model(self, best_epoch):
os.rename(os.path.join(self.args.state_dir, self.args.name + '.' + str(best_epoch) + '.ckpt'),
os.path.join(self.args.state_dir, self.args.name + '.best'))
def train(self):
best_epoch = 0
best_mrr = 0
bad_count = 0
for epoch in range(self.args.max_epoch):
losses = []
self.kge_model.train()
for batch in self.train_dataloader:
positive_sample, negative_sample, _ = batch
positive_sample = positive_sample.to(self.args.gpu)
negative_sample = negative_sample.to(self.args.gpu)
negative_score = self.kge_model((positive_sample, negative_sample),
self.relation_embedding,
self.entity_embedding)
negative_score = (F.softmax(negative_score * self.args.adversarial_temperature, dim=1).detach()
* F.logsigmoid(-negative_score)).sum(dim=1)
positive_score = self.kge_model(positive_sample,
self.relation_embedding, self.entity_embedding, neg=False)
positive_score = F.logsigmoid(positive_score).squeeze(dim=1)
positive_sample_loss = - positive_score.mean()
negative_sample_loss = - negative_score.mean()
loss = (positive_sample_loss + negative_sample_loss) / 2
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
losses.append(loss.item())
if epoch % self.args.log_per_epoch == 0:
logging.info('epoch: {} | loss: {:.4f}'.format(epoch, np.mean(losses)))
self.write_training_loss(np.mean(losses), epoch)
if epoch % self.args.check_per_epoch == 0:
if self.args.setting == 'Collection':
eval_res = self.evaluate_multi()
elif self.args.setting == 'Isolation':
eval_res = self.evaluate()
self.write_evaluation_result(eval_res, epoch)
if eval_res['mrr'] > best_mrr:
best_mrr = eval_res['mrr']
best_epoch = epoch
logging.info('best model | mrr {:.4f}'.format(best_mrr))
self.save_checkpoint(epoch)
bad_count = 0
else:
bad_count += 1
logging.info('best model is at round {0}, mrr {1:.4f}, bad count {2}'.format(
best_epoch, best_mrr, bad_count))
if bad_count >= self.args.early_stop_patience:
logging.info('early stop at round {}'.format(epoch))
break
logging.info('finish training')
logging.info('save best model')
self.save_model(best_epoch)
logging.info('eval on test set')
self.before_test_load()
if self.args.setting == 'Collection':
eval_res = self.evaluate_multi(eval_split='test')
elif self.args.setting == 'Isolation':
eval_res = self.evaluate(eval_split='test')
def evaluate_multi(self, eval_split='valid'):
if eval_split == 'test':
dataloader = self.test_dataloader
elif eval_split == 'valid':
dataloader = self.valid_dataloader
client_ranks = ddict(list)
all_ranks = []
for batch in dataloader:
triplets, labels, triple_idx = batch
triplets, labels = triplets.to(self.args.gpu), labels.to(self.args.gpu)
head_idx, rel_idx, tail_idx = triplets[:, 0], triplets[:, 1], triplets[:, 2]
pred = self.kge_model((triplets, None),
self.relation_embedding,
self.entity_embedding)
b_range = torch.arange(pred.size()[0], device=self.args.gpu)
target_pred = pred[b_range, tail_idx]
pred = torch.where(labels.byte(), -torch.ones_like(pred) * 10000000, pred)
pred[b_range, tail_idx] = target_pred
ranks = 1 + torch.argsort(torch.argsort(pred, dim=1, descending=True),
dim=1, descending=False)[b_range, tail_idx]
ranks = ranks.float()
for i in range(self.args.num_client):
client_ranks[i].extend(ranks[triple_idx == i].tolist())
all_ranks.extend(ranks.tolist())
for i in range(self.args.num_client):
results = ddict(float)
ranks = torch.tensor(client_ranks[i])
count = torch.numel(ranks)
results['count'] = count
results['mr'] = torch.sum(ranks).item() / count
results['mrr'] = torch.sum(1.0 / ranks).item() / count
for k in [1, 5, 10]:
results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) / count
logging.info('mrr: {:.4f}, hits@1: {:.4f}, hits@5: {:.4f}, hits@10: {:.4f}'.format(
results['mrr'], results['hits@1'],
results['hits@5'], results['hits@10']))
results = ddict(float)
ranks = torch.tensor(all_ranks)
count = torch.numel(ranks)
results['count'] = count
results['mr'] = torch.sum(ranks).item() / count
results['mrr'] = torch.sum(1.0 / ranks).item() / count
for k in [1, 5, 10]:
results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) / count
logging.info('mrr: {:.4f}, hits@1: {:.4f}, hits@5: {:.4f}, hits@10: {:.4f}'.format(
results['mrr'], results['hits@1'],
results['hits@5'], results['hits@10']))
return results
def evaluate(self, eval_split='valid'):
results = ddict(float)
if eval_split == 'test':
dataloader = self.test_dataloader
elif eval_split == 'valid':
dataloader = self.valid_dataloader
pred_list = []
rank_list = []
results_list = []
for batch in dataloader:
triplets, labels = batch
triplets, labels = triplets.to(self.args.gpu), labels.to(self.args.gpu)
head_idx, rel_idx, tail_idx = triplets[:, 0], triplets[:, 1], triplets[:, 2]
pred = self.kge_model((triplets, None),
self.relation_embedding,
self.entity_embedding)
b_range = torch.arange(pred.size()[0], device=self.args.gpu)
target_pred = pred[b_range, tail_idx]
pred = torch.where(labels.byte(), -torch.ones_like(pred) * 10000000, pred)
pred[b_range, tail_idx] = target_pred
pred_argsort = torch.argsort(pred, dim=1, descending=True)
ranks = 1 + torch.argsort(pred_argsort, dim=1, descending=False)[b_range, tail_idx]
pred_list.append(pred_argsort[:, :10])
rank_list.append(ranks)
ranks = ranks.float()
for idx, tri in enumerate(triplets):
results_list.append([tri.tolist(), ranks[idx].item()])
count = torch.numel(ranks)
results['count'] += count
results['mr'] += torch.sum(ranks).item()
results['mrr'] += torch.sum(1.0 / ranks).item()
for k in [1, 5, 10]:
results['hits@{}'.format(k)] += torch.numel(ranks[ranks <= k])
torch.save(torch.cat(pred_list, dim=0), os.path.join(self.args.state_dir,
self.args.name + '_' + str(self.args.one_client_idx) + '.pred'))
torch.save(torch.cat(rank_list), os.path.join(self.args.state_dir,
self.args.name + '_' + str(self.args.one_client_idx) + '.rank'))
for k, v in results.items():
if k != 'count':
results[k] /= results['count']
logging.info('mrr: {:.4f}, hits@1: {:.4f}, hits@5: {:.4f}, hits@10: {:.4f}'.format(
results['mrr'], results['hits@1'],
results['hits@5'], results['hits@10']))
test_rst_file = os.path.join(self.args.log_dir, self.args.name + '.test.rst')
pickle.dump(results_list, open(test_rst_file, 'wb'))
return results