-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
204 lines (162 loc) · 8.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import uuid
from datetime import datetime as dt
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import wandb
from tqdm import tqdm
import json
from src.utils.model_io import load_checkpoint, save_checkpoint, save_weights
from src.utils.utils import RunningAverage, RunningAverageDict
from src.utils.metrics import compute_errors
from src.models.deltar import Deltar
from src.dataloader.nyu import NYUV2
from src.loss import SILogLoss
import os
os.environ["OMP_NUM_THREADS"] = "1" # noqa
os.environ["MKL_NUM_THREADS"] = "1" # noqa
PROJECT = "deltar"
logging = True
def main_worker(args):
model = Deltar(n_bins=args.n_bins, min_val=args.min_depth,
max_val=args.max_depth, norm=args.norm)
if args.resume != '':
model, optimizer_state_dict, epoch = load_checkpoint(args.resume, model)
args.epoch = epoch + 1
args.last_epoch = epoch
else:
args.epoch = 0
args.last_epoch = -1
optimizer_state_dict = None
model = model.cuda()
model = torch.nn.DataParallel(model)
train(model, args, epochs=args.epochs, lr=args.lr, experiment_name=args.name,
optimizer_state_dict=optimizer_state_dict)
def train(model, args, epochs=10, experiment_name="DeepLab", lr=0.0001,
optimizer_state_dict=None):
global PROJECT
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print(f"Training {experiment_name}")
run_id = f"{dt.now().strftime('%d-%h_%H-%M')}-nodebs{args.bs}-tep{epochs}-lr{lr}-wd{args.wd}-{uuid.uuid4()}"
name = f"{experiment_name}_{run_id}"
if logging:
tags = args.tags.split(',') if args.tags != '' else None
if args.dataset != 'nyu':
PROJECT = PROJECT + f"-{args.dataset}"
wandb.init(project=PROJECT, name=name, config=args, dir='./', tags=tags, notes=args.notes)
with open(f'{wandb.run.dir}/run_args.json', 'w') as f:
json.dump(args.__dict__, f, indent=2)
if args.dataset == 'nyu':
train_loader = NYUV2(args, 'train').data
if args.dataset_eval == 'nyu':
test_loader = NYUV2(args, 'online_eval').data
criterion_ueff = SILogLoss()
model.train()
m = model.module
params = [{"params": m.get_1x_lr_params(), "lr": lr / 10},
{"params": m.get_10x_lr_params(), "lr": lr}]
optimizer = optim.AdamW(params, weight_decay=args.wd, lr=args.lr)
if optimizer_state_dict is not None:
optimizer.load_state_dict(optimizer_state_dict)
iters = len(train_loader)
step = args.epoch * iters
best_loss = np.inf
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, lr, epochs=epochs, steps_per_epoch=len(train_loader),
cycle_momentum=True,
base_momentum=0.85, max_momentum=0.95, last_epoch=args.last_epoch,
div_factor=args.div_factor,
final_div_factor=args.final_div_factor)
for epoch in range(args.epoch, epochs):
if logging: wandb.log({"Epoch": epoch}, step=step)
# import ipdb; ipdb.set_trace()
for i, batch in tqdm(enumerate(train_loader), desc=f"Epoch: {epoch + 1}/{epochs}. Loop: Train",
total=len(train_loader)):
optimizer.zero_grad()
img = batch['image'].to(device)
depth = batch['depth'].to(device)
input_data = {'rgb': img}
additional_data = {}
additional_data['hist_data'] = batch['additional']['hist_data'].to(device)
additional_data['rect_data'] = batch['additional']['rect_data'].to(device)
additional_data['mask'] = batch['additional']['mask'].to(device)
additional_data['patch_info'] = batch['additional']['patch_info']
input_data.update({
'additional': additional_data
})
if 'has_valid_depth' in batch:
if not batch['has_valid_depth']:
continue
bin_edges, pred = model(input_data)
mask = depth > args.min_depth
loss = criterion_ueff(pred, depth, mask=mask.to(torch.bool), interpolate=True)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.1) # optional
optimizer.step()
if logging and step % 5 == 0:
wandb.log({f"Train/{criterion_ueff.name}": loss.detach().item()}, step=step)
step += 1
scheduler.step()
if step % args.validate_every == 0:
# if logging and step % args.validate_every == 0:
model.eval()
criterion_loss = {}
criterion_loss['ueff'] = criterion_ueff
metrics, val_loss = validate(args, model, test_loader, criterion_loss, epoch, epochs, device)
# print("Validated: {}".format(metrics))
if logging:
wandb.log({f"Test/{criterion_ueff.name}": val_loss['val_si'].get_value()}, step=step)
wandb.log({f"Metrics/{k}": v for k, v in metrics.items()}, step=step)
save_checkpoint(model, optimizer, epoch, fpath=f"checkpoints/{experiment_name}_{run_id}_latest.pt")
save_weights(model.module, fpath=f"weights/{experiment_name}_{run_id}_latest.pt")
if metrics['rmse'] < best_loss:
save_checkpoint(model, optimizer, epoch, fpath=f"checkpoints/{experiment_name}_{run_id}_best.pt")
save_weights(model.module, fpath=f"weights/{experiment_name}_{run_id}_best.pt")
best_loss = metrics['rmse']
model.train()
return model
def validate(args, model, test_loader, criterion_loss, epoch, epochs, device='cpu'):
with torch.no_grad():
criterion_ueff = criterion_loss['ueff']
val_si = RunningAverage()
metrics = RunningAverageDict()
for i, batch in tqdm(enumerate(test_loader), desc=f"Epoch: {epoch + 1}/{epochs}. Loop: Validation", total=len(test_loader)):
img = batch['image'].to(device)
depth = batch['depth'].to(device)
input_data = {'rgb': img}
additional_data = {}
additional_data['hist_data'] = batch['additional']['hist_data'].to(device)
additional_data['rect_data'] = batch['additional']['rect_data'].to(device)
additional_data['mask'] = batch['additional']['mask'].to(device)
additional_data['patch_info'] = batch['additional']['patch_info']
input_data.update({
'additional': additional_data
})
if 'has_valid_depth' in batch:
if not batch['has_valid_depth']:
continue
bin_edges, pred = model(input_data)
mask = depth > args.min_depth
loss = criterion_ueff(pred, depth, mask=mask.to(torch.bool), interpolate=True)
val_si.append(loss.detach().item())
pred = nn.functional.interpolate(pred, depth.shape[-2:], mode='bilinear', align_corners=True)
if logging and i == 0:
wandb_pred = wandb.Image(pred[0,0], caption=f"epoch:{epoch}")
wandb_depth = wandb.Image(depth[0,0], caption=f"epoch:{epoch}")
wandb.log({"pred": wandb_pred})
wandb.log({"depth":wandb_depth})
pred = pred.squeeze().cpu().numpy()
pred[pred < args.min_depth_eval] = args.min_depth_eval
pred[pred > args.max_depth_eval] = args.max_depth_eval
pred[np.isinf(pred)] = args.max_depth_eval
pred[np.isnan(pred)] = args.min_depth_eval
gt_depth = depth.squeeze().cpu().numpy()
valid_mask = np.logical_and(gt_depth > args.min_depth_eval, gt_depth < args.max_depth_eval)
metrics.update(compute_errors(gt_depth[valid_mask], pred[valid_mask]))
return metrics.get_value(), {'val_si': val_si}
if __name__ == '__main__':
from src.config import args
if args.no_logging:
globals()['logging'] = False
main_worker(args)